PREFACE

In a bid to standardize higher education in the country, the University
Grants Commission (UGC) has introduced Choice Based Credit System
(CBCS) based on five types of courses viz. core, discipline specific, generic
elective, ability and skill enhancement for graduate students of all programmes
at Honours level. This brings in the semester pattern, which finds efficacy in
sync with credit system, credit tranafer, comprehensive continuous assessments
and a graded pattern of evaluation. The objective is to offer learners ample
flexibility to choose from a wide gamut of courses, as also to provide them
lateral mobility between various educational institutions in the country
where they can carry their acquired credits. I am happy to note that the
University has been recently accredited by National Assessment and
Accreditation Council of India (NAAC) with grade “A”.

UGC (Open and Distance Learning Programmes and Online Programmes)
Regulations, 2020 have mandated compliance with CBCS for U. G. programmes
for all the HEIs in this mode. Welcoming this paradigm shift in higher
education, Netaji Subhas Open University (NSOU)} has resolved to adopt
CBCS from the academic session 2021-22 at the Under Graduate Degree
Programme level. The present syllabus, framed in the spirit of syllabi
recommended by UGC, lays due stress on all aspects envisaged in the
curricular framework of the apex body on higher education. It will be
imparted to learners over the six semesters of the Programme.

Self Learning Materials (SLMs) are the mainstay of Student Support
Services (555) of an Open University. From a logistic peint of view, NSOU
has embarked upon CBCS presently with SLMs in English/Bengali. Eventually,
the English version SLMs will be translated into Bengali too, for the benefit
of learners. As always, all of our teaching faculties contributed in this process.
In addition to this we have also requisitioned the services of best academics
in each domain in preparation of the new SLMs. I am sure they will be of
commendable academic support. We look forward to proactive feedback
from all stakeholders who will participate in the teaching-learning based on
these study materials. It has been a very challenging task well executed by the
teachers, officers & staff of the University and I heartily congratulate all
concerned in the preparation of these SLMs.

I wish you all a grand success.

Professor (Dr.) Ranjan Chakrabarti

Vice-Chancellor
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Unit - 1 1 Quantum N ature of Light

Structure

1.1 Objective

1.2 Introduction

1.3 Planck’s constant

1.4 Millikan’s Experiment for Vertification of Einsterin’s Photo-electric
Equation

1.5 Compton Effect
1.6 Energy of recoil electron

1.7 Davission and Germer Experiment (Experimental evidence of de Broglie’s
hypothesis

1.8 Summary

1.9 Questions

1.1 Objective

This chapter intends to impart knowledge to the students regarding the following
topics :

#® Planck’s concept of quantum, Planck’s constant and light as a collection of
photons

& Black body radiation, Photoelectric effect and Compton scattering

® De Broglie wavelength and matter waves, Davisson-Germer experiment.

1.2 Introduction

By the end of the 19th centruy, the battle over the nature of light as a wave or
a collection of particles seemed over. James Clerk Maxwell’s synthesis of electric,
magnetic and optical phenomena and the discover by Heinrich Hertz of electromagnetic
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waves were theoretical and experimental triumphs of the first order. Along with
Newtonian mechanics and thermodynamics, Maxwell’s electromagnetism took its
place as a foundational element of physics. However, just when everthing seemed to
be settled, a period of revolutionary change was ushered in at the beginning of the
20th century. A new interpretation of the emission of light by heated objects and new
experimental methods that opened the atomic world for study led to a radical
departure from the classical theories of Newton and Maxwell—quantum mechanics
was born. Once again the question of the nature of light was reopened. The first two
decades of the 20th century left the status of the nature of light confused. That light
is a wave phenomenon was indisputable : there were countless examples of
interference effects—the signature of waves—and a well-developed electromagnetic
wave theory. However, there was also undeniable evidence that light consists of a
collection of particles with well-defined energies and momenta. In 1923 the French
physcist Lows de Broglie suggested that wave-particle duality 1s a feature common
to light and all matter.

1.3 Planck’s constant

Classical physics is dominated by two fundamental concepts. The first is the
concept of a particle, a discrete entity with difimte position and momentum which
moves in accordance with Newton’s laws of motion. The second is the concept of
an electromagnetic wave, an extended physical entity with a presence at every point
in space that 1s provided by electric and magnetic fields which change in accordance
with Maxwell’s laws of electromagnetism. The classical world picture is neat and
tidy : the laws of particle motion account for the material world around us and the
laws of electromagnetic fields account for the light waves which illuminate this
world. This classical picture began to crumble in 1900 when Max Planck published
a theory of black-body radiation; 1.e. a theory of thermal radiation in equilibrium
with a perfectly absorbing body Planck provided an explanation of the observed
properties of black-body radiation by assuming that atoms emit and absorb discrete
quanta of radiation with energy E = hv, where v 1s the frequency of the radiation and
h is a fundamental constant of nature with value h = 6,626 x 1034 Js. This constant
is called Planck’s constant.

Planck’s constant has a strange role of linking wave-like and particle-like
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properties. In so doing it reveals that physics cannot be based on two distinct,
unrelated concepts, the concept of a particle and the concept of a wave. These
classical concepts, it seems, are at best approximate descriptions of reality.

1. Photons

Photons are particle-like quanta of electromagnetic radiation. They travel at the
speed of light ¢ with momentum p and energy E give by

he

p= andE=T L (1)

==

where A is the wavelength of the electromagnetic radiation. In comparison with
macroscopic standards, the momentum and energy of a photon are tiny. For example,
the momentum and energy of a visible photon with wave length A = 663 mm are
p=1027Js and E = 3 x 10-1°J, We note that an electronvolt, 1 eV = 1,602 x 10~
19 J, is a useful unit for the energy of a photon. Visible photons have energies of the
order of an eV and X-ray photons have energies of the order of 10 keV.

The evidence for the existence of photons emerged during the early years of the
twentieth century. In 1923 the evidence became compelling when A, H Compton
showed that the wavelength of an X-ray increases when it is scattered by an atomic
electron. This effect, which i1s now called the Compton effect, can be understood by
assuming that the scattering process 1s a photon-electron collision in which energy
and momentum are conserved. Blackbody radiation and Photoelectric effect are the
other experiments whose experimental results needed the concept of photon to be
explained properly.

2. Black Body Radiation

A hot body emits thermal radiations which depend on composition and the
temperature of the body. The ability of the body to radiate is closely related to its
ability to absorb radiation. A Body which is capable of absorbing almost all the
radiations incident on it is called a black body. A perfectly blackbody can absorb the
entire radiations incident on it. Platinum black and Lamp black and absorb almost
all the radiations incident on them.

Emissive power of a black body is defined as the total energy radiated per
second from the unit surface area of a black body maintained at certain temperature.
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Absorptive power of a black body is defined as the ratio of the total energy absorbed
by the black body to the amount of radiant energy incident on it in a given time
interval. The sbsorptive power of a perfectly black body is 1.

Spectral Distribution of energy in thermal radiation (Black Body radiation
spectrum)

A good absorber of radiation is also a good emitter. Hence when a black-body
is heated it emits radiations. In practice a black body can be realized with the
emission of Ultraviolet. Visible and infrared wavelength on heating a body. German
physicists Lammer and Pringsheim studied the energy density (U;) as a function of
wavelength (A) for different temperatures (T) of a black body using a spectrograph
and a plot is made. This is called Black Body radiation spectrum.

T 1600 K
Uy,
1400
/\ 1200 K
r—>

Figure 1.1 : Typical blackbody radiation spectra

The Salient features of black body radiation spectrum are as mentioned below :

1. Theoretically a black-body emits all wavelengths ranging from zero to
infinity.

2. The energy density of blackbody radiation increases with wavelength then
takes a msximum value Uy, for a particular wavelength A,,, and then decrease
to a value zero for longer wavelengths. Hence the Energy distribution in the
spectrum is not uniform.

3. As the Temperature increases the wavelength (1) corresponding to the
maximum emission energy (U,) shifts towards shorter wavelength side.
Thus the A, is inversely proportional to temperature (T) and is called
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Wein’s Displacement Law  Mathematically A,, = b/T, Here b is Wein’s
Constant having value of 2.898 x 2073 mk.

4. The total energy emitted by the black body at a given temperature is given
by the area under the curve and is proportional to the fourth power of
temperature. This is called Stefan’s law of radiation. Mathematically E = ¢
T4, here o is the Stefan’s constant of value 5.67 x 1078 Wm?K—,

Explanation of Black Body Radiation Spectrum
Classical Theories

(1) Wein’s Distribution Law : In the year 1893 Wein using thermodynamics
showed that the energy emitted per unit volume in the wavelength range A and
A+ dA can be expressed using the formula

-2

24
U;Ld?u=&e AT - (2)

?LS
where C, and C, are empirical constants. A suitable selection for these constants
helps to explain the experimental curve in the shorter wavelength region. The
drawback of this law is if fails to explain the curve in the longer wavelength region.
Also according to this equation the energy density at high temperatures tends to zero
which contradicts experimental observations.

(2) Rayleigh-Jeand Law : British Physicists Lord Rayleigh and James made an
attempt to explain the Black Body radiation spectrum Based on the concepts
formation of standing electromagnetic waves and the law of equipartition of energy.
According to this law the energy density of radiation i1s given by

_ 8wkT
U,d= X d 3

where ‘k’ is Boltzmann constant with value 1.38 x 10723 JK-!. This law successfully
explains the energy distribution of the black body radiation in the longer wavelength
region. According to this law black body is expected to radiate large amount of
energy in the shorter wavelength region thus leading to no energy available for
emission in the longer wavelength region. Experimental observations show that the
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most of the emissions of the black body radiation occur in the visible and infrared
regions. This discrepancy is called Ultraviolet Catastrophe.

Quantum theory of radiation

Planck’s law of radiation : German physicist Max Plank successfully explained
the energy distribution in the black body radiation based on the following assumptions :

(a) The surface of the black body contains oscillators

{b) These oscillators absorb or emit energy in terms of integral multiples of
discrete packets called quanta or photons. The energy E of photons is
proportional to the frequency v of the raciation. Mathematically
E = nhv, where h is a constant called Planck’s constant and its value 1s
6.625 x 1034 Js, and n can take integral values.

(¢) At thermal equilibrium the rate of absorption and emission of radiation are
equal.

According to Planck’s law of radiation the expression for energy density of
radiation is given by

_ 8rhe 1
Und=25"he | (4

e?LkT—l

where ¢ 15 the velocity of light, k 1s Boltzmann constant and h is Planck’s
constant. This law explains the distribution of energy in the black body
radiation spectrum completely for all wavelengths and at all temperatures.
Also this law can be reduced to Wein’s distribution law in the shorter
wavelength region and to Rayleigh-Jeans law in the longer wavelength
region.

Photo-Electric effect : The emission of electrons from the surface of certain
materials when radiation of suitable frequency is incident on it is called the
phenomenon of Photo-Electric effect. The electrons emitted are called photo electrons
and the material is said to be photo sensitive. This was discovered in the 1887 by
Henrich Hertz. This phenomenon cannot be explained using the existing theory of
classical physics, Photoelectric effect signifies the particle nature of radiation.
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The main characteristics of photo-electric effect are obtained experimentally and
mentioned as below :

1. Photo electrons are emitted instantaneously as soon as the radiation is
incident.

2. Photo electric emission occurs only if the frequency of the incident radiation
is greater than a certain value called Threshold frequency.

3. The kinetic energy acquired by photo electrons is directly proportional to
the frequency of the incident radiation and is imjdependent of the intensity.

4. The number of photoelectrons emitted depends on the intensity of the
incident radiation and is independent of the frequency.

Incident
Radiation 9

Figure 1.2 : Schematic diagram showing photo ¢lectric effect
Einstein’s explanation of the photo electric effect

When metal is illuminated with radiation of suitable frequency, the photons of
the radiation interact with electrons in the metal. When a photon interacts with an
electron, the electron absorbs it and the photon vanishes. The energy acquired by the
electron from the photon is made use in two statges. A part of the energy is used by
the electron to free itself from the metal since it is bound within metal. Thus some
minimum amount of energy is required for the electron just to escape from the metal
is called Work Function (¢). The rest of the energy is carried by the clectron as
Kinetic Energy (KE). Since the energy of the photon is hv the photoelectric satisfies
the following equation

hv = ¢ = KE .. (5
This is called Photoelectric Equation. Here v is the frequency of the incident radition.

Equation (5) can also be written in the form

hv =hvy + %mv2

. (6)
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where v, is the threshold frequency and v is the velocity of electron and m the
mass. Thus from the photoelectric equation, if the frequency of the radiation v < v
no photoelectrons and emitted.

1.4 Millikan’s Experiment for Verification of Einstein’s Photo-
electric Equation

The apparatus consists of an evacuated chamber C (Fig. 1.3). At the centre of
the chamber drum D is kept which can rotate freely about a vertical axis. Four
cylindrical blocks of different materials (sodium, potassium, lithium etc.) are fixed
on the surface of the drum. K is a sharp knife edge which can scrap the surface of
the metal. W is a quartz window through which monochromatic light of known
frequency is allowed fo pass, F is a Faraday cylinder connected to a quadrant etc.
trometer. With the help of a sensitive potential divider arrangement, suitable positive
or negative potential can be applied to the drum with respect to the cylinder F.

Initially the surface of any one of the metal blocks is scraped with the knife edge
K and then by rotating the drum D, the block is turned towards the window W.

Incident
monochro-
matic light

) A
| N
i —

Battery

Figure 1.3
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Allow monochromatic radiation of known frequency v to be incident on the
surface of the metal block. When the drum is kept at a negative potential with respect
to the cylinder F, the photo-electrons ejected from the surface are accelerated
towards the cylinder and the quadrant electrometer records the deflection. When a
small positive potential is applied to the drum, only the fast moving electrons reach

— Vo O 3 ]

Figure 1.4

the cylinder F, the deflection in the electrometer decreases. Now, the positive
potential of the drum is gradually increased till the deflection in the quadrant
electrometer is zero. At this stage no photoelectron reaches the cylinder. This
particular potential V, is called the stopping potential. Even when the intensity of
light is increased for the same frequency, the deflection remains zero for the same
stopping potential V,,. It means that the stopping potential V, is the same and is
independent of the intensity of incident light. The experiment is repeated for
different frequencies for the same metal It is found that the stopping potential V,
increases with increase in frequency for a given metal. According to Einstein’s
photo-electric equations

hv — ¢ = %ml)2
Here ¢ = hvy
hy = _ 1. .2
v = hyy, = —mv
2
_ 1 .2
Also evp = MY
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hv — hVO = eVO
h
Vo= L [v— v

The experiment is repeated for different metals and graphs are drawn between
frequency v along the X-axis and the stopping potential V, along y-axis. The graph
is a straight line (Fig 1.5). A straight line graph is obtained in all cases and this is
agreement with Einstein’s theory.

sy

Vo v » B

Figure 1.5

Determination of Planck’s Constant

As discussed earlier, the stopping potentials of a particular metal are determined
for different frequencies. A graph plotted between frequency v along the X-axis and
stopping potential v, along the X-axis. Take a point A on the graph and measure .
Draw AB parallel of Y-axis. The point B gives the value of v. The graph meets the
X-axis and X-axis at the point C corresponding to the threshold frequency v,. The

slope of the graph
AB_(_Vo
BC {(v-vg

Bt Vo= Do
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Vo
b e[u_no]

h = e [slope of the graph]

Here e is the charge of the electron and it is equal to 1.6 x 1071°C. Hence the
value of Plan constant h can be determined. The value of h was found to be [6.624
= 0.01] x 1034 J—s. This is in agreement with the value determined by other
methods.

Problem 1. What is the threshold wavelength for a tungsten surface whose work
function 4.5 eV. [Delhi (Hons.)]

Solution, Here = 45¢eV
= 45x1.6x1071° Joule
Bur = hVO

Here h = 6.6 x 1034 Joule-second
c= 3x108 m/s

Ao = 6.6x1074 x3x108
45x1.6x107"
ho = 9.640 <107 m
ho = 9640 A
Problem 2. A photoelectric surface has a work function of 4 eV. What is the

maximum velocity of the photoelectrons emitted by light of frequency 101° hertz
incident on the surface

h = 6.6 x 10734 Joule-second
e= 16x10"1° Coulomb
m= 9x103l g
= 4ev

= 4 x 1.6 x 1071¢ Joule

= 6.4 x 10719 Joule

Solution, Here
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(2=

mu

I |—

mu

b3 | —

U:

U:

ho — ¢ =6.6x 1073 x 10715 - 65 x 10°1°

02 x 10719

\/0.4><10‘19 _ Jo.4><10‘19
m 9x1073!

2.107 x 105 m/s,

Problem 3, Calculate the energy in electron-volts of the photoelectrons from the
surface of a tungsten emitter when it is iradiated with light of wavelength 1800 A,
given that the threshold wavelength for photoelectric emission in this case 1s 2300

A

Solution.

Here

But

or

E:

= o T
Il

leV =

1 Joule =

[Delhi (Hons.) 1981]

h(v - vp)

1 1 |_.|r—-A
h"[TK]‘h"[ o }

= 6.6x 103 J-s

3 x 108 m/s
1800 A =18 x 10718 m
2300 A=23x10%m

5510~ }

6.6 % 10-34x2 x 108 [ s s
181078 x23%10

6.6x107°% x3x10% x5
18x 23x 10718

2.4 % 10719 Joule
1.6 x 10-1° Joule

1
1 eV
1.6x10°1°

2.4%x1071°

Lexio1? loeV

Hence the energy of each photoelectron emitted from the sufrace is 1.5 eV
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Problem 4. Calculate the longest wavelength of the incident radiation which
well eject electrons from a metal work function of 6 electron volts. Planck’s constaht
h = 6.624 x 1073 joule second. [Delhi 1982]

Solution. Here, work function ¢ = hu, electron volts
6 x 1.6 x 10712 joule

_ 6x16x107 _ 6x1.6x107"?

— hertz
Ha h 662410~

Ao = ¢ _3x10%%6624x107
Yo 6x1.6x107"7

A= 207 x107 m= 2070 A.

Problem 5. Calculate the threshold frequency and the corresponding wavelength
of radiation incident on a certain metal whose work function is 3 x 107!? J. Given,
Planck’s constant = 6.62 x 10734 J-s, [Delhi (Sub) 1985]

Solution, Here, work function
¢ = hy, =331 x1012]
h= 662x 103 J-s

o ¢ _331x107"
7 h ge2x1073
= 5 x 10 hertz
o = £ - 3x10° =6x10"" m
vo  5x101
= 6000 A

Problem 6. Light of wavelength 4300 A is incident on (a) nickel surface of
work function 5 electron volts and (b) a potassium surface of work function 2.3
electron volts. Find out, if electrons will be emitted, and if so, the maximum velocity
of the emitted electrons in each case. [Delhi 1985]

Solution. (a) For the nickel surface
¢ = hy, electron volts



20 NSOU e GE-PH-41

= 5% 1.6 x 10712 Joule

5x16x10""°
vo =% = a0 ® o
h, =< o 3310% % 6.624 10734
vo 8x1071°
= 2484 x 1019 m
= 2484 A

As X is less than the wavelength of the incident radiation, (A = 4300 A),
electrons will not be emitted.
(b) For the potassium surface,

¢ = 2.3 electrons volts
= 23 x 1.6 x 10717 joule
ch

310% % 6.624 x10734
23x1.6x107 "
4389 x 10719 m
4389 A.
As X, is greater than | electrons will be emitted. Let the maximum velocity of

the ejected electrons be vy

%m‘u2 = hy - hUO
1_1
) hc[l 7‘«0]
|2 he(hg —2A)
Em‘o - 70"0

v = 2hC(?L0 —3.) %
mAAg
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[ 2%6.624 107 %3108 %89 x 10710 ]
9. 1x10731 4300 %1010 4389 x 10719

v = 1.423 < 10° m/s.

Problem 7. The wavelength of the photoelectric threshold for silver is 3250 A.
Determine the maximum energy if the ejected electrons from a silver surface by light

of wavelength 2537 A. [LA.S. 1983]
Solution. U = h{u - upy)
1_1|_[Ao=?
B hc[l 10]_[7“7“0]
Here = 66x1034 J.sand ¢ = 3 x 108 m/s

= 2537 A =2537 <1010 m
= 3250 A = 3250 x 10-10 m

3250x10710 —2537 ><10‘10]

U= 66x103%x3 x 108 [
3250 %1071 % 253710710

= 1.625 x101% J

Problem 8. A surface having work function 1.51 eV i1s illuminated by light of
wavelength 4000 A Calculate (i) the maximum kinetic energy of the ejected
electrons and (i1) the stopping potential. [LA.S]

Solution, Here 0o = 151 ev
151x16x1019]

= 2416 x 107197
A= 4000 A=4%x10"7m

3
v= £=3X10 75510 He
A ax10”
. 1 2
() hv - g = Lmv?=U

2
U= 6624 %103 x75x 104 -2416 x 10°1°
U= 4968 x 10719 - 2 416 x 10°1¢
= 2552 %1017



22 NSOU e GE-PH-41

—1%
2.552x10 7 .y

T 1ex107l
U= 1595eV
(i) Alsohv— ¢y = ev=U
stopping potential V = %
v 2.552x10°1%
1.6x10°1°

V = 1.595 volts.

Problem 9. The stopping potential for the electrons emitted from a metal due
to photoelectric effect is found to be 1 V for light of 2500 A. Calculate the work
function of the metal in eV,

Solution, Here V=1 Volt

A= 25000 A=25%x10"m

oo £ 3x10°
Ao 25x1077
or v= 12x105Hz
o= 72
e= 16x1019C
hv= ¢ =eV
¢ = huv—eV

= 6624 x 1073 x 1.2 <10 - 1.6 x 10719 x 1
= 7.9488 x 10719 - 1.6 x 10717
= 63488 x 107197

6.3488 x10°1°
1.6x1071°

= 3.968 eV.

Problem 10, The photoelectric threshold wavelength for Tungsten is 2300 A.
Find the energy in eV of the emitted electrons from the surface by ultraviolet light
of wavelength 1800 A [Delhi, 1990]

Solution, E = h(v - vyp)

eV
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(1 1
— he|a-—-L
E B xo]
(g —A
= h e
E= 1" ]
Here h= 66x1034 J-s
¢ = 3x10% ms/
A= 1800 A=1800x10"m=18x108%m
Ao = 2300 A =2300x 1019 m=23x10° m
-3 -8
23x107% —18 <10
E= 66x103x3 108[ ]
* e 18%10~8 x23x10™°
B 6.6x1073 x3x10% x5
18%23x10%
= 24x107197
But 1eV = 16x10197
or 17= [ﬁ) eV
1.6x10™
24x10717
E = -19
1.6x10
E= 15 eV

Hence, the energy of each photoelectron emitted from the surface 1s 1.5 eV.
Problem 11. Calculate the energy of a photon having the same momentum as

that of 10 MeV proton. [Osmania, 1992]
Solution. Mass of proton, m = 1.67 x 1027 kg

Energy of proton, U = %m‘u2 =107 x1.6x1071° J

U= 16x1012J

o= [m]%
m
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Momentum, p = mv = m[—]

oo [

2U
m

|
p= [2mU]§

Energy of photon,

1
E = pc=[2mU]2

1
E = [2><L6?><10_27 ><1_6><10‘12]2 %3x10%J

E= 219%x1012]

21910712

o100 - 1369107 V.

Problem 12. The wavelength of light falling on the surface of a metal of work
function 2.3 eV is 4300A. With what velocity will the electron be emitte.

Solution. Here ¢

(2=

mu

b [—

[Delhi (Hons.) 1992]
9.1 x 10731 kg
23 eV
23x1.6%x10712]
3.68 x10-19 J
4300 A=43x10"7m

o f-

' -34 8
[6.624)(10 x3x10 J—3.86><10'19
43x10"

4.62 % 10719 - 3,68 x 1071°
0.94 x 10719 ]

1
[2><0.94><10“9 }2 =[2x0.94x10_19
m 91x107!

]%

4.55 x 105 m/s,
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1.5 Compton Effect

The phenomenon of scattering of X-rays from suitable material and hence
increase in its wavelength is called Compton Effect. When X-rays are incident on
certain materials they are scattered and the scattered X-rays contain two components.
One component has the same wavelength as the incident x-ray and the other with
wavelength greater than the incident X-rays. This is due to the scattering X-ray
photons from the electrons present in the material. Due to the transfer of energy from
X-ray photon to electron the wavelength of X-ray increases and the electron recoils.
This can be treated as collision between two particles. Thus Compton Effect signifies
particle nature of radiation. The change in wavelength which is also called Compton
Shift is given by

Ah =X =A=' (1-cosO
1 —" ( ) . (D
Compton scattering Ezg?rlén / Intensity Intensity
. Target D 2 —(mee?)? 1 0=0° | 0 = 90°
In}(l:l(ient A electon 20 €T o ! Primary Beam : :
photon at rest, ~ | : :
I 1
_Er vy h Xo A
c ¢ Ar
E; hy
P = 1= Vi = h Scattered
¢ c i photon
lf-?&izA?L:mLoc(l—cose) Ar A

() (b)

Figure 1.6 : (a) Schematic representation of Compton scattering (b) Compton shift

Considering the elastic collide between a photon and an electron, the following
is the derivation :
hv, : energy of photon
hVO
s
momentum of the photon
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p; = pfcos® + p.cosd (1)

(conservation of momentum in x direction)
0 = ppsin® + psing (2)

(conservation of momentum in x direction)

2 2 2 . 2
Pe = Pe (cOs” ¢ +sin” 9)
= (p; —pr cos(;))2 +p% sin? ©
=2 2
=p; +p; —2pipr cosO

hvg + m0c2 =hv+ (m%c4 + pg cz)

m%c'{I +plc? = (hvy —hv+mye?)?

= (hvg —hv)* +mic* + 2mge? (hvp - hv)

p2c? = (hvg —hv)? +2mge? (hvg — hv)

pizc2 + p%c2 —2pipr cosOc? = (hvg — hv)2 + 2m0c:2 {hvg —hv)
hvwg{l—cos @)= moc2 (vg —v)

- As—=Ap =mloc(1—cos®)

. . h _ .
Therefore, above is the Compton effect equation and m_=?‘-c is Compton

o<
wavelength of an electron.

Difference between Compton Effect and Photoelectric Effect

Compton effect Photoelectric effect

This is the effect caused by the inelastic | This is the effect caused by the weakly
scattering of high-energy photons that are | bound electrons that are ejected from the
bound to free electrons. surface of the material when
electromagnetic radiation interacts with
the electrons.
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Compton effect

Photoelectric effect

The energy associated with the recoil
electrons falls in the mid-energy range.

The energy associated with the emitted
electrons fall in the low-energy range.

The wavelength of the scattered photon
is higher than that of the incident photon.

The wavelength is not observed as the
photon disappears after interacting with
the electrons.

Arthur Compton explained the effect.

Albert Einstein explained the effect.

1.6 Energy of recoil electron

Direction of Recoil electron. Dividing Eq. (5) by Eq. (4), we get

__ hv’sin® __ v’sin®
tan = h{v—v’cos0) (v—-v'cos8) - (12)
Using Eq. (10), we get
1 _1 h 1 h . 20
==+ {(l1-cos@)==+——2sin" =
V. mgc? V. mge? 2
o, Vv'= Y = Y 276 where B = hv2 L (13)
14| 2V g2 8 1+2Bsin” (E) mgc
I‘l‘loC2 2
Substituting this value of v’ in Eq. (12), we get
vsin(—h’[1+ 2[3sin2 (%)] cot (%)
tan @ = D
[v—{vcos@/(l+2|3sin2 g)}]
co(£)
L (14

tan ¢ = ————
hv

1+ v

[mOCZJ
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Kinetic Energy of Recoil electron. The K. E. of recoil electron is the difference
between the nergies of incident and scattered photons, i.e.

KE =hv - hv

2Bsin®(6/2)
= hy — Y =h
KE =hv-h [1+2[35in2(9f2)] V[1+2[35in2(9f’2)] - (13

where B = hv/ myc?

Problem 1. X-rays of wavelength 0.7080 A are scattered from a carbon block
through a angle of 90° and are analysed with a calcite crystal, the interplanar
distance of whose reflecting planers is 3.13 A. Determine the angular separation, in
the first order, between the modified and the unmodified rays.

. , h _
Sol. Wavelength of the modified rays = A’ = A+ — (1—cos9)

6.63x10™*
9.11x1073 x3x10%

= 0.7080 x 10712 m + ( ) m= 07323 A

Let 6 and 0 be the angles of Bragg reflections corresponding to the wavelengths
A and A, Then, for n = 1 (first order),
2d sin® = nA = 0.7080 x 101 m
and 2d sin®” = nA” = 0.7323 x 10710 m,
Here, d=313x101m; .. 6=6°30" and 6" = 6° 43"
The angular separation, in thefirst order, 6 —6=13"
= —g=1s
between themodified and un mod ified rays
Problem 2. A photon of ene]rgy E is Compton scattered by an angle 8. Show
the kinetic energy of the recoiled electron is

- E*(1-cos¢)
E(l—cosq))+mec2

Calculate the value of E’ for E = 40 KeV and ¢ = 60°.



NSOU e GE-PH-41 29

Solution : From ?L=% and (2.5.9) we get
h_h h
= ———=——(1-c¢o0s0)
P P MmeC ¢
p.r_ pOmeC

"~ mgc+po(1-cosd)
From (2.5.5) the kinetic energy of the recoiled electron is

E'=(pp-phec

pg {1-cosd)c
meC+po{l—cosd)

Finally po = Elc

E? {(1-cos¢)
E(1-cos¢)+mec

E = 2
Taking E = 40 keV, ¢ = 60° and m.c?2 = 511 MeV we get

16><103(1—l)

E = =15 keV.

4><10“(1—%)+.511><106

Dual Nature of Radiation and de Broglie’s hypothesis :

The phenomenon like Interference. Diffraction and Polarization are attributed to
the wave properties of radiation. The Quantum theory of radiation and experiments
like Photoelectric effect and Compton Effect describe the particle nature of radiation.
Thus radiation behaves like waves and like particles under different suitable
circumstances. Hence radiation exhibits dual nature. In the year 1924 French
physicist Louis de Broglie made a daring suggestion “If radiant energy could behave
like waves in some experiments and particles or photons in others and since nature
loves symmetry, then one can except the particles like protons and electrons to
exhibit wave nature under suitable circumstances.” This is well known as de
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Broglie’s hypothesis. Therefore waves can be even associated with moving material
particles called Matter waves and the wavelengths associated with matter waves 1s
called de Broglie wavelength. The de Broglie wavelength is given by

p=t . (8)

T mv
where m is the mass of the particle and v is its velocity.
Expression of de Broglie wavelength :
According to the Einstein’s photon theory the energy of the photon is given by
E = hv

Here ‘v’ 1s the frequency of the incident radiation and ‘h’ is Planck’s constant.
If ‘m’ is the mass equivalent of the energy of the photon then

me? = hv

Since the frequency of the incident radiation could be expressed in terms of

wavelength ‘A’ as v = % we get
2_h h
me =T°:> me=st=p .. (9)

Here ‘p’ is the momentum of photon

Therefore 7“=L=% L (10)

me

Thus, according to de Broglie’s hypothesis, for a particle moving with velocity
‘v’ the above equation can be modified by replacing the momentum of photon with
the momentum of the moving particle ‘mv’. Therefore the de Broglie wavelength
associated with a moving particle is given by

_h_h
l—p — L (1)

Here ‘m’ is the mass of the moving particle.
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de Broglie wavelength of an electron accelerated with a potential difference of

Consider an electron accelerated by a potential difference 'V’ volts. The kinetic

energy acquired by the electron is given by

E=1lmy? =v= 2E
2 m

Here ‘m’ is the mass of the electron and is given by 9.1 x 10731 kg

Substituting the value of ‘v’ in equation (1) we get

a=_h __h
m% vZmE .. (12)

Since the electron acquires kinetic energy from the applied potential differenve
CV)

The kinetic energy of the electron is also given by E = eV where ‘e’ is the
charge on electron with value 1.6 x 1071°C

) X h
Hence the expression for the de Broglie wavelength A= eV .. {13)

Substituting the values for the constants h, ma and ¢ we get

12.26
?FW A . (14)

Problem 1. Calculate the De-Broglie wavelength of a beam of electrons whose
energy is 100 eV. Take h = 6.6 x 1073 Joule-second and

Solution. m=91x103! kg
Energy B = Lmu? = 100 eV = 100 x 16 x 10-1° Joule

v = 2E oy [ZE
m m
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Momentum, my = m % =+/2mE

o L=_h
= o hmE metres
Hence, h=6.6x10 kg

- 6.6 10~
T (2x91x1071 x100x1.6x1071°)

A

172

=1.23 x 10°!° metre
=123 A

Problem 2, What is the momentum of a photon of wavelength 6 x 107 m?

; hv _ h
Solution. Momentum of photon = o cf_v
_h
A
_ 6624x107%
6x1077

= 1.104 x 10?7 kg-m/s.

Problem 3. Deduce the momentum of an electron having kinetic energy 1 BeV,

2

Solution, E=p—
2m
or p=+2mE
Here m=91x 1031 kg
E=1Bev=10"ev=10"x16 x 10719
E=16x1010]

p=1[2x9.1x 103! x 1.6 x 1010]12
= 1.7 x 10-2° kg-m/s

Problem 4. A particle of mass 0.51 MeV/c? has kinetic energy 100 eV. Final its

De-Broglie wavelength.
Solution. U= 100 eV
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mass, m =

100x16x10197

1.6 x 10-17 J
051MeV _ 051x10° x1.6x10"
2 (3x10%)?
9 % 1031 kg
%muz
2U
m
h __ h
mv m+«2U/m
h
2mU
6.624 %1074

[29x1973 x1,6x10717 1172
1.234 x 101 m = 1.234 A.

Problem 5. Compare the energy of a photon with that of a neutron when both
are associated with wavelength 1 A. Mass of neutron = 1.67 x 1027 kg.
1A =101 m
Solution. (i) Energy of Photon

U1:

U1:

U,
(1} Energy of neutron,

x:

6.624x1073 x3x10°

19.872 x 10716 J

—_— v =
my OF mA
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h?.
U =
2 2mA?
(6.624x10724)?
U, =

2x1.67x10727 x(10710)?
U, = 13.14x 1021 ]

U 19872x1071°
U; 13.14 10731

= 1.51 x 105

Problem 6. Photoelectrons are liberated by ultraviolet light of wavelength 3000
A from metallic surface for which the photoelectric threshold is 4000 A. Calculate
the De-Broglie was length of electrons emitted with maximum Kinetic energy.
Solution. Here, A = 3000 A=3x10"m
A= 4000 A =4x10"m

hv — hvy = U
he _he
A ho U
1_1
U = hc|:k x0i|
U= 6,624><10—34><3><108[ L == 1 }
3x1077  4x1077

U= 1.656 x10°1° J
De-Broglie wavelength

A= ——
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mu

1
a— _h __| |2
S2mU | 2mU

b | —

N (6.624 %1074
T 2x9.1x1073 x1.656 10717

= 1.2x10° m = 124

Problem 7. Show that the De-Broglie wavelength of electrons accelerated
through V volts is very nearly given by

1
. - 150 |2
A (in A) [v (volts)} [Kanpur, 1991]
. 1 2
Solution. Here, eV = Emu
1
Y = [ZeV]z
m
_ _h
A= mu
_ __h
- 1/2
m[ZeV]
m
1
_ | _n* 2
"~ | 2meV
h = 6624 x 1034

m= 9.1x103 kg
e= 1.6x101°C
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b3 |—

(6.624x10734)?
A= 31 “19
2x91x10 7" x16x10 " xV

1
A = [%]2 x10"%m

1
= [150 |2
Sk

Example 8., Calculate the wavelength of matter-waves associated with an
electron which has been accelerated from rest, through a potential difference of 1.25
kV.

Solution. Here E= eV=16x1019%x125x1037J

E= 2x1016]
1...2
Also E= -mv
2
_ I2E
u= ==
m
_ h
A= mu
K\ o= h
n (2E
m
h
A= 2mE
E= 2x101¢]

h = 6.624 x 10" J-s
m= 9.1x103 kg
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6.624 %107 |
(2%9.1x1073 x 2x10716)}2

A=

A= 0348 101" m
= 0348 A

Problem 9. What is the momentum of a proton having kinetic energy 1 B e v?
[GN.D.U. 1991]

Solution, Here U= 1BeV=10eV=10%x16x101]
= 1.6x10°10]
m = 167 %1027 kg

U= %mu

1
- 2
p = [2mU]'?

p= [2x167x107% x 1.6 x 1071012
p= 731 x107! kgm/s

Problem 10. Calculate the wavelength of an electron of I MeV (non-relativistic)
[Kanpur, 1991]

Solution. U= 100eV=100x16x1019]

U= 16x10153]
m= 9.1x103 kg

_ 1 .2
U = 2m‘0

1
o= [20]
m
h

k =

h -
m
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6.624x107>
[2x9.1x1073 x1.6x10713 2

1227 x 1012 m
1.227 < 1072 A

Problem 11. Calculate the most probable De-Broglie wavelength associated

with thermal neutrons. Given, temperature = 27°C, k = 1.38 x 102! J/K, mass of

neutron = 1.6749 x 1027 kg

Solution, For neutron,

U=
l 2:

or 2mu
or v =
A =
A =
Here h =
k:

[Kolkata, 1992]

3
SKT
3T
1

[3kT]2

m
h _ h
m 1

! mx[3kT]2

m
_h
[3kTm]"?
6.624 x 1034 J S, m = 1.6749 x 1027 kg
1.38 x 102! J/kg, T=127+273 =300 K
6.624x 1077

[3x138x10721 1300 x1.6749 x 10727 1V

1.45 < 1027 m = 0.145 A.
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Problem 12, The De-Broglie wavelength of a proton is 1 A Find its kinetic
energy in eV. [Delhi, 1992]

Solution. Mass of proton

m= 167 =102 kg

Il=1A=101"m

(6.624x 1074
2x(10719)? %1 67 %107

= 134x102°7

13141072
= Tlexio? T 8.2 x 1072 eV.

1.7 Davisson and Germer Experiment (Experimental evidence
of de Broglie’s hypothesis)

The experimental set up is as shown in figure 1.7. It consists of an arrangement
to study Bragg diffraction of electrons generated from an electron gun E. The
electrons can be accelerated to a desire velocity. Then the electrons are made to
incident on the nickel crystal C mounted on the turntable which can be rotated. The
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electrons are scattered in all direction by the atomic planes of the cyrstal. The No.
of electrons scattered (Intensity) in a direction can be measured by a detector
(Ionization Chamber) to which a galvanometer G is connected. The deflection in the
galvanometer is proportional to the intensity of the electron beam entering the
detector. The angle ¢ can be measured using a circular scale S. The whole instrument
is placed in an evacuated chamber. During the investigation, The Electrons accelerated
by a potential difference of 54 V are made to incident on the nickel crystal. The first
order electron beam reflection intensity is found to be maximum for a value of ¢ =
50° (Fig 1.8 and 1.9) with the glancing angle of incidence 65°. The spacing of family
of Bragg’s planes involved in the reflection is determined using X-rays and is found
to be 0.091 nm.

7.

Figure 1.7 : Schematic diagram of Davison and Germer experiment

Bragg’s 4

Intensity

54 volte
Beam

50°
¢ in degree

v

Figure 1.8 : Electron scattering from Ni crystal Figure 1.9 : Variation of intensity with ¢
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According to Bragg’s law for the first order reflection maxima (n = 1)
2d Sin© = nh
= A=2dSin®=2x0.091 x 102 x Sin (65°)
=0.165x10% m

According to de Broglie’s hypothesis for an electron accelerated by potential
differeen of 54 V the de Broglie wavelength is given by

1=A==0166x10"m

The experimentally determined value is in good agreement with the value
calculated according to de Broglie’s hypothesis. Thus Divisson and Germer experiment
not only confirms the wave associated with moving particle it also verifies the de
Broglie’s hypothesis.

1.8 Summary

In this chapter, The Planck’s concept of light as a collection of photons is
introduced to the students. The experimental evidence of quantum nature of light
such as Black body radiation, Photoelectric effects and Compton scattering are
discussed and the problems related to these topics are introduced to the students. The
de Boglie’s concept of wave-particle duality is introduced and the experimental
evidence of the existence of matter wave (Davisson-Germer experiment) is discussed.

1.9 Questions

1. What is the significance of Planck’s constant in Physics? What are photons ?

2. What 1s a black body ? Discuss the distribution of energy in the spectrum
of a black body.

What do you mean by ultraviolet catastrophe ? How Planck successfuly

LN

explained the energy distribution in black body radiation ?

4. What is the photoelectric effect ? What are the characteristics of photoelectric
effect ? How Einstein’s photoelectric equation explains these characte ?
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10.

How was Millikan able to verify Einsteins photoelectric equation
exerimentally ?

How will you determine experimentally Planck’s constant by cut off
potential method ?

What is the Compton effect ? Why Compton scattering is known as an
incoherent scattering ?

. Obtain the equation for calculating the Compton shift. What is the Compton

wavelength ?

Discuss briefly the wave nature of matter. Obtain an expression of de
Broglie wavelength for matter waves.

Describe the Davisson and Germer experiments for the study of electron
diffraction. What are the results of the experiment’?
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Structure

2.1 Objective

2.2 Introduction

2.3 Rutherford’s Experiment

2.4 Resonance, excitation and Ionization Potentials
2.5 Summary

2.6 Questions

2.1 Objective

This chapter intends to impart knowledge to the students regarding the following
topics :

e Problems with Rutherford model : instability of atoms ad observation of
discrete atomic spectra

® Bohr’s quantization rule and atomic stability

#® Calculation of energy levels for hydrogen like atoms and their spectra

2.2 Introduction

The Bohr model of the atom was proposed by Neil Bohr in 1915, It came into
existence with the modification of Rutherford’s model of an atom. Rutherford’s
model introduced the nuclear model of an atom, in which he explained that a nucleus
(positively charged) is surrounded by negatively charged electrons. Bohr theory
modified the atomic structure model by explaining that electrons more in fixed
orbitals (shells) and not anywhere in between and he also explained that each orbit
(shell) has a fixed energy Rutherford explained the nucleus of an atom and Bohr
modified that model into electrons and their energy levels. Bohr’s model consists of
a small nucleus (positively charged) surrounded by negative electrons moving

43
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around the nucleus in orbits. Bohr found that an electron located away from the
nucleus has more energy, and the electron which is closer to nucleus has less energy.

2.3 Rutherford’s Experiment

Rutherford atomic model was the firs step in the evolution of the modern atomic
model. Ernest Rutherford was a keen scientist who worked to understand the
distribution of electrons in an atom. He performed an experiment using alpha
particles and gold foil and made the following observations :

1. Most of the alpha particles passed straight through the gold foil (A).
2. There was a deflection of the alpha particles by a small angle (B).

3. Very small amount of alpha particles rebounded (C).

Gold foil ———_

Detector

Beam of a
particles

Radioactive
source

Figure 2.1 : Schematic diagram of Rutherford’s experiment

From his experiment, Rutherford came to the following conclusions :
1. Most of the space in an atom is empty.
2. The space occupied by the positive charges is very small.

3. The positive charges mass of the atom were concentrated in a very small
volume within an atom.
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Rutherford atomic model

Rutherford developed a nuclear model of the atom on the basis of his experiment
and observations. The Rutherford atomic model has the following features :

1. The centre of an atom is called the nucleus. It is positively charged and
almost all mass of the atom resides in it.

2. Electrons spin around the nucleus in a circular path.

3. Comparatively, the size of the nucleus is smaller than the size of the atom.

Electrons
Nucleus

Orbit

Figure 2.2 : Rutherford atomic model

Drawbacks of Rutherford’s atomic model :
Rutherford’s atomic model suffers from the following drawbacks :

1. This atomic model failed to explain the stability of atoms. According to the
model, electrons revolve around the positively charged nucleus.

Figure 2.3 : Spiral path of accelarating electrons

It’s not possible for the long run as we know atoms are stable while any
particle in a circular orbit would undergo acceleration. During acceleration
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charged particles would radiate energy. Thus the revolving electrons will
lose energy and finally fall into the nucleus following spiral paths.

2. This model of the atom also failed to explain the existence of definite lines
in the hydrogen spectrum.

Bohr Atomic Model :

In 1913 Bohr proposed his quantized shell model of the atom to explain how
electrons can have stable orbits around the nucleus. To get a remedy of the stability
problem. Bohr modified the Rutherford model by requiring that the electrons move
in orbits of fixed size and energy. The energy of an electron depends on the size of
the orbit and is lower for smaller orbits. Radiation can occur only when the electron
jumps from one orbit to another. The atom will be completely stable in the state with
the smallest orbit, since there is no orbit of lower energy into which the electron can
jump. The model was based on the quantum theory of radiation and the classical law
of physics. It gave new idea of atomic structure in order to explain the stability of
the atom and emission of sharp spectral lines.

Postulates of Bohr atomic model :

(1) The atom has a central massive core nucleus where all the protons and
neutrons are present. The size of the nucleus is very small.

(i1) The electron in an atom revolves around the nucleus in certain discrete
orbits. Such orbits are known as stable orbits or non-radiating or stationary
orbits.

(i11) The force of attraction between the nucleus and the electron is equal to
centrifugal force of the moving electron. Force of attraction towards nucleus
= centrifugal force.

(iv) An electron can move only in those premissive orbits in which the angular
momentum (mvr) of the electron is an integral multiple of h/2w. Thus, mvr
= n 2n/h Where, m = mass of the electron, r = radius of the electron orbit,
v = velocity of the electron in its orbit. This principal is know as quantization
of angular momentum. In the above equation ‘n’ is any integer which has
been called as principal quantum number. It can have the values n = 1, 2,
3, ....{from the nucleus). Various energy levels are designed as K (n = 1),
L{n=2),M(n=3).. etc. Since the electron present in these orbits is
associated with some energy, these orbits are called energy levels.
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(v) The emission or absorption of radiation by the atom takes place when an
electron jumps from one stationary orbit to another.

NWEl—Ezth ('\A/W\El_EZZhV

(o8]

Figure 2.4 : Schematic representation of emission and absorption in Bohr atom

(vi) The radiation is emitted or absorbed as a single quantum (photon) whose
energy hv is equal to the difference in energy AE of the electron in the two
orbits involved. Thus, hv = AE Where ‘h’ = Planck’s constant, v = frequency
of the radiant energy. Hence the spectrum of the atom will have certain
fixed frequency.

(vii)) The lowest energy state (n = 1) is called the ground state. When an electron
absorbs energy, it gets excited and jumps to an outer orbit. It has to fall back
to a lower orbit with the release of energy.

photon (energy) energy
level
6 5
emission
4 3
. .
-2 absorption
. 1 0
before spectrum Bohr atom after spectrum
2 2 . .
~—emission
line
E1l E 1 _
.+~ absorption
'
0 feature
1 2 3 4 5 6

1 2 3 4 5 6

wavelength wavelength

Figure 2.5 : Energy level diagram, asborption and emission spectra in a Bhor atom
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The electron travel in circular

e orbits around the nucleus. The

orbits have quantized sizes and
clectron energies. Energy is emitted
orbits from the atom when the
electron jumps from one orbit
electron to another close to the nucleus.
Show here is the first Balmer
transition, in which an electron
jumps from orbit n = 3 to orbit
n = 2, producing a photon of
red light with an energy of
1.89 eV and a wavelength of

n=2 656x10~° m.

<
energy
?
I
(8]
=)
I
N

greater distance

-136eV ———— from nucleus
n=1

Figure 2.6 : Schematic representation of Bohr’s atomic model

Calculation of energy levels for hydrogen like atoms and their spectra :

Let us suppose that the hydrogen-like atom has a nucleus of charge +Ze and
mass M and the electron has charge —e and mass m, and that the distance between
them is a. The distance of the nucleus from the centre of mass is ma/(M + m) and
the distance of the electron from the centre of mass is Ma/(M + m). We’ll suppose
that the speed of the electron in its orbit around the centre of mass is v. The angular
momentum of the sytem is mva, then using Bohr’s first assumption we can write

mua = nk,
where n is an integer.

The Coulomb force on the electron is equal to its mass times its centripetal
acceleration :

Ze2 _ ml)2
41 e a2 Ma/(M+m)

It you eliminate u from these, you obtain an expression for the radius of the nth
orbit :
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4r g h*n?
4= Ze2|.t ’
Where
_ _mM
=+ M

The quantity represented by the symbol | is called the reduced mass of the
electron. It 1s slightly less than the actual mass of the electron. In the hydrogen atom,
in which the nucleus is just a proton, the ratio M/m is about. 1836, so that pu =
0.9946m. For heavier hydrogen-like atoms it is closer to m. From equation (2) we
can get the explicit expression of v as

MZe2

v= 4meq (M+m)hn

The energy of the atom is the sum of the natural potencial energy between
nucleus and electron and the orbital kinetic energies of the particles. That is :

2
Ze? 12,1 (mu)
_Zem Ll ly{mu
dmega 200 T2VM

If we make use of equation 7.4.2 this becomes

_mM4+mp® 1o 1m? o

E= M MY MY
__ 1 (M+mj. 2
= 2m( M )U

Then, making use of equation 7.4.5 we obtain for the energy

uzle!

E=——r—° 1
204 e 1 n?
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In deriving this expression for the energy, we had taken the potential energy to
be zero at infinite separation of proton and nucleus, which is a frequent convention
in electrostatics. This is, the energy level we have calculated for a bound orbit is
expressed relative to the energy of ionized hydrogen. Hence the energy of all bound
orbits is negative. In tables of atomic energy levels, however, it is more usual to take
the energy of the ground state (n = 1) to be zero. In that case the energy levels are
given by

2. 4
E=uz—e“_(1_%)
2{dnmep) R n

It is customary to tabulate term values T rather than energy levels, and this is
achieved by dividing by hc. Thus

2.4
U S .(1—%)
2(4n e, ) i he n

The expression before the large parentheses 1s called the Rydberg constant for
the atom is question. ('H : Z = 1), it has the value 1.09679 x 107 m~!

If we put Z=1 and | =m resulting expression is called the Rydberg constant
for a hydrogen nucleus of infinite mass; it 1s the expression one would arrive at if
one neglected the motion of the nucleus. It 15 one of the physical constants whose
value is known with greatest precision, its value being

R., = 1.097373153 x 107!

The term value equal to 1.097373 x 107 m™! or the corresponding energy, which
is 2.1799 x 10-18J or 13.61 eV is called a rydberg.

Hydrogen Emission Spectrum

We all know that electrons in an atom or a molecule absorb energy and get
excited, they jump from a lower energy level to a higher energy level, and they emit
radiation when they come back to their original states. This phenomenon accounts
for the emission spectrum through hydrogen too, better known as the hydrogen
emission spectrum.
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Gas discharge tube
Containing hydrogen

Figure 2.7 : Schematic arrangement of observing Hydrogen emission spectra

The hydrogen spectrum is an important evidence to show the quantized electronic
structure of an atom. The hydrogen atoms of the molecule dissociate as soon as an
electric discharge is passed through a gaseous hydrogen molecule. It results in the
emission of electromagnetic radiation initiated by the energetically excited hydrogen
atoms. The hydrogen emission spectrum comprises radiation of dicrete frequencies.
These series of radiation are named after the scientists who discovered them.

S q&«&\ Lyman series
P

% S
= S
<& 6
: = 632480 md 3y )
n= * — 410 mm ] Balmer series
18
n=2 &
z
n=3
7,
094
n=4 &/ Paschen series
n=>5 n==o6

Figure 2.8 : Schematic representation Hydrogen emission spectra

In the year 1885, on the basis of experimental observations, Balmer proposed
the formula for correlating the wave number of the spectral lines emitted and the
energy shells involved. This formula is given as :
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V= 1 _1
V—109677(22 2)

n
This series of the hydrogen emission spectrum is known as the Balmer series.
This is the only series of lines in the electomagnetic spectrum that lies in the visible

region. The value, 109,677 cm!, is called the Rydberg constant for hydrogen. The

2

Balmer series is basically the part of the hydrogen emission spectrum responsible for
the excitation of an electron from the second shell to any other shell. Similarly, other
transitions also have their own series names. Some of them are listed below :

. The transition from the first shell to any other shell—Lyman series

. The transition from the second shell to any other shell—Balmer series

1

2

3. The transition from the third shell to any other shell—Paschen series
4. The transition from the fourth shell to any other shell—Brackett series
5

. The transition from the fifth shell to any other shell—Pfund series

Ly-o Ba-o Pa-o Br-o Pf-a Hu-o

| | Lo

100 nm Visible 100 nm 10 000 nm

Figure 2.9 : Soectral lines of Hydrogen emission spectra

Johannes Rydberg, a Swedish spectroscopist, derived a general formula for the
calculation of wave number of hydrogen spectral line emissions due to the transition
of an electron from one orbit to another. The general formula for the hydrogen
emission spectrum is given by :

v =109677 Lz: Lz
o n,
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Where, ny =1, 2, 3, 4, ..
m=n +1

v = wave number of electromagnetic radiation. The value 109,677 cm™! is
known as Rydberg constant for hydrogen.

Problem 1. The Rydberg constant for hydrogen is 1.09678 x 107/m and ionized
helium 1.09722 = 107/m. Calculate the ratio of the mass of the proton to that of the
electron, assuaning the helium nucleus to be four times the mass of proton.

[LAS. 1976]

Solution. The nucleus of the atom has motion though it is too heavy as

compared to the electron. Due to this reason the reduced mass of the electron is

m = [ M ]= 1
M+m 14+ M

M

Here m is the mass of the electron and M is the mass of the nucleus. For
hydrogen, Rudberg constant,

Ry = —R
m

[l My ]

For ionized helium, Rydberg constant

Ry = —R
1+ m]
[ MHe

4
L} per metre
ch

2
860

Here

Dividying (i) by (i)
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Taking My, = 4My and simplifying
Ry —-1R
m Rye —Ry

Here Ry = 1.09678 x107/m and Ry, = 1.09722 = 107/m

-1
My 107 1.09678 4 x1.09722

m 107 1.09733-1.09722-1.09678 | = 1869

Problem 2, Calculate the radius of the hydrogen atom. Show that the velocity
of the electron in the first Bohr orbit in hydrogen atom is (1/37) ¢, where ¢ is velocity

of light. [Delhi (Hons ) 1922], [Delhi 1992]
. . . €, n’h?
Solution, (i) Radius r= ————
nmZe”
Here n= 1

h= 6624 x1073 J-s
cp = 885 x 1012 C2/N-m?
m= 91x103 kg

e= 1.6x1071°C

8.85%(6.624 x1073%)?
rx9.1x103 1 x (1.6x1071°)?

r= 529 x1011 m

= 05294

2

. _ _Ze
Velocity, v= 3 o In
Here Z=1,n=1
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(1.6x10717y?
L= 12 _34
2x8R83x10 X 6,624x10

v (1.6x1071%y2
¢ 2x885%x10712 % 6.624%1074 x3x10%
v_ 1
c 137

_ L
L= (137)°

2.4 Resonance, excitation and Ionization Potentials

Resonance Potential. The minimum potential required to provide energy to the
electron in the ground state of the first excited state i.e., fromn =1 to n =2 is called
resonance potential.

The energy of electron in the gound state of hydrogen atom is — 13.6 eV and
first excited state (n = 2) is — 3.4 eV. Therefore, the energy required to move and the
electron from the ground state to the first excited state is (- 3.4) eV — (- 13.6) eV
=102 eV.

Therefore the resonance potential for hydrogen is 10.2 V.

Excitation Potential. The state n > 1 are called excited states. The energy
required to move the electron to the first, second, third excited states is given by

E,

—1.51+13.60 =12.09 eV

—085 +13.60=1275¢V

102 eV
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Therefore the successive exciation potentials are 10.2 'V, 12.09 V, 12,75 V and
$O on.

The excitation potential is the potential required to provide energy to raise the
electron from the ground state to the state n > 1 1e, n=2, 3, 4...

Tonization Potential. It is the minimum potential required that provides energy
to bring the electron from the ground state out of the atom.

For hydrogen atom, ionization potential = 13.6 V

The energy to the electron in the atom can be provided by electron emitted from
a hot filament and accelerated though a creation potential V.

1
ZeV]Z

The electron will move with a velocity v where v = [
m

(1) If the energy of the striking electron is just equal to or more than the energy
required by the electron to come of the atom, the electron in the atom absorbs energy
and comes out of the atom.

Problem 1. Wavelength of Balmer Hy, line is 6563 A. Calculate the wavelength
of Hp line.

Solution. For H, line of Balmer series ie., the first number,

1 :
A = %R .. (1)

For H line of Balmer series i.e., the second number,

E = ER ... {ii)
Dividing (i) by (ii)
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But

57

M2
27

20
= (B
A= 6563 A

20\ ccpn
Ay = (5)6563
A, = 4861 A

Problem 2. Calculate the energy required to excite the hydrogen atom from the

ground state {(n = 1) to the first excited state (n = 2).

[Delhi (Hons.)]

Solution. Energy required

Here

U= _me L_L]

2.2 2 2
SEOh | nj  nj

me4

(11
U= —_
82 h? |12 22]

3me4

3263 h?

m= 91x103Kg e=16x101°C
€9 = 8.85x 10712 C/N-m?
h= 6624 %103 Js

3x91x1072 % (1.6x1071%)*

U= Joules

32x(8.85x10712)% x(6.624x10734)?

3x9.1x103 1 x (1.6x1071%)*

U= 0_15 eV

32 (8.85x10712)? % (6.624x107*)? x1 6x1

U= 1013 eV
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Problem 3. The wavelength of sodium D, line is 590 nm. Calculate the
difference in energy levels involved in the emission or absorption of this line.

Solution. Here E('Ilz—lll) = hu=%
Here, h= 6624 x 10734 J-s
¢c= 3x10% mfs
h= 590 nm = 590 x 107 m

. (6624x107)x3x10°
(ng=ny) 500 %1077
= 3.37x10°1°J

Problem 4. The wavelength of the second line of the Balmer series in the
hydrogen spectram is 4861 A. Calcutta the wavelength of the first line. [Rajasthan]

Solution. For the second line,

= = 1 _1
Y R[22 42]

v, = 1gR

For the first line,
oo
v = =R

or 3}_1 = %R

Dividing (i) by (i)
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Mooz
Ay 20
27A,
M=
But A, = 4861 A
_ 27x4861
M = 10
or A = 6563 A.

Problem 5. A beam of electrons is used to bombard gaseous hydrogen. What is
the minimum energy in electron-volts the electrons must have if the first number of
the Balmer series corresponding to a transition from n, = 3 state to n; = 2 state is
to be emitted?

h = 6.6 x 1073* Joule second.
[Mumbai, 1981, Kolkata,1992]

Solution. Energy required

Here n=2m=3

4
Energy requird = [%]X(%) Joule

But 1eV= 16x10"1 Joule

4
Energy required = Sme electron volts

8x36x € h? x(1.6x1071%)

5x9%x 107 x(1.6x1071%)?
8x36(8.85x10712)% % (6.6 x1073*)? % (1.6 x10717)

1.88 eV.
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Problem 6. Calculate the ionization potential in electron volts for hydrogen
atom. Given that
e = 1.6 x1071® coulomb
m= 9x1031 kg
h = 6.6 x 1073 Joule-second
€9 = 8.85 - 1017 coulomb?/Newton-m?
Solution. Work function,

me4

o= SE% K2 Joules

9x1073 x (1.6 x1071%y*
¢ = LG YR Joule
8x(8.85x10712)? x(6.6x1974)

But leV = 1.6 x 107! Joule

9%1073! x(1.6x1071%)*
P g 885x107°) x(66x1074)2 x16x107"

¢ = 13.51 eV.

Problem 7. The wavelength of the first number of Balmer series of hydrogen
is 6563 x 1071 m._ Calculate the wavelength of its second number. [Delhi, 1982]
Solution. For the first number

s - 1 1
- K]

— 5
Vl = %R
1l _ 5
or 3'] = %R

For the second number,

- _ nll_1
22 42
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1 _ 3
or K2_16

Dividing (i) by (i)

M2
A 27
20
Ay = fxl
But A = 6563 x 1019 m

20x6563x1071

b = 27
4861 x 101 m

Problem 8. The ionization potential of atomic hydrogen is 13.6 V. Calculate the
wavelength of light emitted in a transition starting at the first excited state of
hydrogen atom. [LAS. 1985]

Solution. Ionization potential = 13.6

Energy of electron in the first orbit

U = -13.6 eV
Energy of electron in the second orbit

=136 _ =136 _ 34y

U2 = n2 4
Ul - U2 = =34+ 136
hv = 102 eV
he 02 16x10197=1.632 %1018 ]
he
A= 1.632x10718
_ 6.624x107" x3x10°
1.632x10718
= 1271 x 10" m

= 1217 A,



62 NSOU e GE-PH-41

Problem 9. Find the radius and speed of the electron in the first Bohr orbit of
the hydrogen atom. How will the radius and speed of electron change with the
increase in atomic number of the atom? [TAS]

Solution, (i) The radius of the Bohr orbit is given by

€4 n’h?
-
nmZe
For hydrogen, Z=1,n=1
= h?
Iy = 3
ame
Here €9 = 885 x10712C?/N-m?

m= 16x101°C
h= 6624 x1073% J-s

8.85x 10712 x(6.624x1073)?
™ 19 1x1073 x(1.6x1071%)?

rp= 530x101'm
H
Z

Therefore radius of the orbit will decrease with increase i atomic number Z.
(1) Velocity of the electron

Also r=

e
V= 2¢,nh
In hydrogen Z=1,n=1
.- ze? _ (1.6x1071%)?
7 2¢0h 2x885x10712 x6.624 <1073
= 2.2 %105 m/s
Also v = Zuy

Therefore velocity of the electron in the orbit will increase with increase at
atomic number Z.
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Problem 10, Calculate the radius of the first Bohr orbit for (i) H and (1) He
atoms and also the velocity of the electron in these orbits as compared to the velocity

of light.
Solution. For hydrogen atom, the radius of the orbit is
€4 n’h?
y= — 5
. mZe?
Here n=1272Z=1
Ip = 8.85x 10712 C/N-m?
m= 91x103 kg
e= 16x101°C
h= 6624 x 1073 Js
8.85x10712 x1x(6.624x107>4)?
g =

3.142x9.1x 1073 x (1.6 x10717)?

g = 5.3x10-11'm
For helium, atom, n=1, Z =2
o = H_530x107!]
Z 2
= 2.65x10 11 m
(i1} Velocity of the electron,

_ Ze®
V= 2¢,nh
For hydrogen Z= landn=1
2
e
V=
2¢y h

(1.6x1071%)?
2%885x10712 x6.624x107*
2.2 x 10° m/s

[LAS]
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v
Also H
C

For helium VHe

Heren=1,7Z =2

Ve

Ve

VHe
c

22x10°

10s 7.33 x 1073
Ze2

2 =S nh

Ze2
2 EO h

= ZUH

2x22x10°
4.4 < 10° m/s

4.4%10°
3108

1.466 x 102

Problem 11. Calculate the difference in wavelength in the spectra of hydrogen
and heavy hydrogen corresponding to the first line on the long wave side of Balmer

Seres.
Solution. Ry
Rp
_m
My
m

Ry =1.097x107 /m
[1AS]

m = 0.000549Mp

0.000549

m__ 0000274

2My;
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In the case of Balmer

n =

Similarly E

My _1+0.000549
= m_ 1+0.000274

= 1.00027

= (Ry) 1.00027

= 1.097 x 107 x 1.00027

= 1.0973 x 107/m

series, for the first member
2,m =3

1 1 5
-l
HLE n%] 3o/

36 1

4Ry 5x1.097x107
= 65633 x 107m

11 _(5)
_ Ry|Lt-L|=[2])r
D[nlz n%] 36 [

36
= SR

36
5%1.0973x107

= 6.5615 x 107" m
= A'H - 7\{)

= 6.5633 x 1077 - 65615 x 107

= 0.0018 x 107" m
= 1.8 A

65
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Problem 12, In hydrogen atom the electron is replaced by a muon whose mass
is 200 times that of an electron and charge is same as that of electron, calculate the
oinization on the basis of Bohr’s theory. [TAS]

Solution, In the case of hydrogen atom, having an electron, the ionization
potential

me4

0= ein - O

when electron is replaced by muon.
m; = 200 m

mie*  (200m)e’

o= f:’»e%h2 865 h?

Dividing (ii) by (i)

O
- = 200
¢
But 0= 13.6 eV
: Oy = 200 % 13.6
= 272x103 eV

Problem 13. What is the energy, momentum and wavelength of the photon
emitted by a hydrogen atom when an electron makes a transition fromn = 2 ton =
1 state? Given inoization potential = 13.6 eV.

Solution. Energy of electron in the first orbit of hydrogen atom,

E, = -136eV

Energy of electron is second orbit

. E_E _-136
27 24 4
E,= 34 eV

(1) Energy of photon emitted = E; — E;
E= -34+ (13.6)
= 10.2 eV
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= 102x1.6%x1017]J
= 1632x1071°]

E _1632x107""

2) M t P=
(2) Momentum, c 32107

P= 544 x 102 kg-m/s

h _6.624x107%*

(3) Wavelength, A= P 5 a1x102

1.218 x 107 m
1218 A.

Limitations of the Bohr’s Theory

In spite of the extraordinary success of the Bohr’s theory there were some
serious himitations

1. It could not account for the spectra of complex atoms.

2. Even simple atoms as neutral helium having more than one electron could
not be dealt with by the Bohr’s theory.

Intensities of lines could not be calculated.

LN

4. 1t failed to give correct results in the complicated conditions of the splitting
of lines in the presence of a magnetic field, known as the anomalous
Zeeman effect.

5. It did not account for the fine structure of the hydrogen lines and it did not
account for the doublet structure of all alkali metal spectra.

2.5 Summary

In this chapter the Rutherford model of atoms and its limitations are discussed.
The Bohr quantization rules and Bohr atomic model are introduced to the students.
Atomic stability 1s discussed in the view of Bohr atomic model. Calculation of
energy levels of hydrogen like atoms, their spectra and related problems are
discussed in this chapter.
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2.6 Questions

1. Describe Rutherford’s model of the atom and the evidence that led to it.
What are the drawbacks of this model ?

2. State the postulates of Bohr atomic model. Obtain the expressions for the
radius and electron energy of the nth orbit.

3. Explain how Bohr’s atomic model successfully accounts for the hydrogen
emission spectrum.

4. Define the terms (i) Critical potential, (1) Excitation potencial and (i)
lonisation potential.

5. The energy of the electron in the nth orbit in hydrogen atom is negative,
explain the fact.

6. Find the wavelength of the photon emitted when the hydrogen atom goes
from n = 10 state to the ground state. Why couldn’t Bohr allow the quantum
number n to take on the value n = 0?



Unit - 3 1 Introduction to quantum mechanics

Structure

3.1 Objective

3.2 Introduction

3.3 Heisenberg’s Uncertainty Principle
3.4 The particle in a box

3.5 Mathematical Proof of Uncertainty Principle for one Dimensional Wave-

packet
3.6 Basic postulates of Wave Mechanics
3.7 Derivation of Time-dependent form of Schrodinger Equation
3.8 Properties of the Wave Function
3.9 Summary
3.10 Questions

3.1 Objective

This chapter intends to impart knowledge to the students regarding the following
topics :

® Wave-particle duality and Heisenberg uncertanity principle. Application of
this principle for estimating minimum energy of a confined particle. Energy-
time uncertainty principle.

e Two slit interference experiment; linear superposition principle as a
consequence; Matter waves and wave amplitude

® Schrodinger equation for non-relativistic particles; Momentum and Energy
operators, stationary states, physical interpretation of wavefunction,
probabilities and normalization; Probability and probability current densities
in one dimension.

69
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3.2 Introduction

Bohr’s theory of the hydrogen atom led de Broglie to the conception of matter
waves. According to the Bohr’s theory, the stable states of electrons in the atoms are
governed by “integer rules”. The only phenomena involving integers in physics are
those of interference and modes of vibration of stretched strings, both of which imply
wave motion. Hence de Broglie thought that the electrons may also be characterized
by a periodicity. So he proposed that matter, like radiation has dual nature.

3.3 Heisenberg’s Uncertainty Principle

Statement. It is impossible to determine precisely and simultaneously the values
of both the members of a pair physical variables which describe the motion of an
atomic system. Such pairs of variables are called cononically conjugate variables.

Example. According to this principle, the position and momentum of a particle
(say electron) cannot be determined simultaneously to any desired degree of
accuracy.

Taking Ax as the error in determining its position and Ap the error in determining
its momentum at the same instant, these quantities are related as follows :

Ax Ap = b2

The product of the two error is approximately of the order of Planck’s constant,
If Ax is small, Ap will be large and vice versa. It means that if one quantity is
measured accurately, the other quantity becomes less accurate. Thus any instrument
cannot measure the quantities more accurately than predicted by Heisenberg’s
principle of uncertainty of indeterminacy. The same relation holds for the energy and
time related to any given event.

ie., AE At = h/2r

According to classical ideas, it is possible for a particle to occupy a fixed
position and have a definite momentum and we can predict exactly its position and
momentum at any time later But according to the uncertainty principle, it is not
possible to determine accurately the simultaneous values of position and momentum
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of a particle at any time. Heisenberg’s principle implies that in physical measurements
probability takes the place of exactness and as such phenomena which are impossible
according to classical may find a small but finite probability of occurrence.

Ilustration (i) : Determination of position with g-ray-microscope. Suppose
we try to measure the position and linear momentum of an electron using an
imaginary microscope with a very high resolving power (Fig. 3.1). The electron can
be observed if atleast one photon is scattered by it into the microscope leans. The
resolving power of the microscope is given by the relation

Microscope Objective

Electron
(0]
Figure 3.1
A
AX = —~
2sin6

where Ax is the distance between two points which can be just resolved by
microscope. This is the range in which the electron would be visible when disturbed
by the photon. Hence Ax is the uncertainty involved in the position measurement of
the electron.

However, the incoming photon will interact with the electron through the
Compton effect. To be able to see this electron, the scattered photon should enter the
microscope within the angle 20. The momentum imparted by the photon to the
electron during the impact is of the order of h/A. The component of this momentum

along OA is —% sin © and that along OB is % sin 0.
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Hence the uncertainty in the momentum measurement in the x-direction is

Apy —%sine—(—%sine) = %sine.

AX X Apy = ZS?nGX%Sine:h

A more sophisicated approach will show that Ax Ap, = h/2m.

It is clear that the process of measurement itself perturbs the particle whose
properties are being measured.

HNlustration (ii) : Diffraction of a beam of electrons by a slit. A beam of
electrons is transmitted through a slit and received on a photographic plate P kept at
some distance from the slit (Fig 3.2). We can only say that the electron must have
passed through the slit and cannot specify its exact location it the slit as the electron
crosses it. Hence the position of any electron recorded on the plate is uncertain by
an amount equal to the width of the slit (Ay). Let A be the wavelength of the
electrons and 0 be the angle of deviation corresponding to first minimum. From the
theory of diffraction in optics. This is the uncertainty in determining the position of
electron along y-axis.

Slit

\ 2 4

A4

Figure 3.2

Initially the electrons are moving along X-axis and so they have no component
of momentum along y-axis. As the electrons are deviated at the slit from their initial

Figure 1.3 : Typical blackbody radiation spectra
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path to form the pattern, they acquire an additional component of momentum along
y-axis. If p i1s the momentum of the electron on emerging from the slit, the
component of momentum of electron along y-axis is p sin 6. As the electron may be
where within the pattern from angle — 6 to + 0, the y-component of momentum of
the electron may be anywhere between —p sin© and +p sin 6.

Therefore, the uncertainty in the y-component of momentum of the electron

Ap,=2psin® = sin (since A= %}
Ay Ap, = ﬁxz—fsin9=2h

ie, Ay Ap, = h/2m, which is Heisenberg’s uncertainty principle.

Problem 1. A microscope, using photons, is employed to locate an electron in
an atom to within a distance of 0.2 A. What is the uncertainty in the momentum of
the electron located in this way?

Sol. Here, Ax =02 A =02 x 10710 m. Ap?

We have, Ax Ap = h or Ap =

2R 2RAX

o 6.626x10*
P™ on(0.2x1071%)

=5274x10">*kgms ™

Problem 2. An electron has a speed of 600 ms~! with an accuracy of 0.005%.
Calculate the certainty with which we can locate the position of the electron. h =
6.6 x 103 Jand m = 9.1 x 103! kg

Sol. Momentum of the electron = mv = 9.1 x 1031x 600 kg ms™!

Ap = (%) mv = (5% 10-5) (9.1 x 10-31 ¥ 600) kg ms™!

From uncertainty principle, Ax Ap = h/2n
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h _ 6.6x107*
2RAP  2m(5x107 x9.1x 10731 x 600)

0.003846 m.

Problem 3. The lifetime of an excited state of an atom is about 10% sec.
Calculate the minimum uncertainty in the determination of the energy of the excited
state.

Sol. We have, AE At = h/2n

B s D _66x10"
= 2RAt 21078

AEZ210x1020]=65%x108¢V
This is known as the energy width of an excited state.

Problem 4. Consider an electron of momentum p in the Coulomb field of a
proton. The field energy is
2
E= p__i
2m  {(4mep)ir’
where r is the distance of the electron from the proton. Assuming that the uncertainty
Dr of the radial coordinate is Ar =~ r and tha Ap = p, use Heisenberg’s uncertainty
principle to obtain at estimate of the size and the energy of the hydrogen atom in the
ground state.

{(h/2m)
Ar

Sol. From the uncertainty principle, Ap =

(h/2m) _(h/2m)
Ar

Making the assumption Ap= , we obtain

2m r2

(h/2m)? 1_{'&%
r
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The radius at which E is a minimum is given by the condition dE/dr = 0, from
which we find

(dmeg ) (h/2m)?
= aO

I‘l'le2

The corresponding lowest value of E 1s

4
€ m =-13.6eV.

(47ep )’ 2(h/2x)?

E0=

Problem 5. Compare the kinetic energies of an electron and a proton to localize
them within an atomic radius which may be taken to be 108 cm, assuming the
momenta of the particles to be equal to the uncertainties in their momentum.

From the uncertainty relation we have

h _105x1077

Ap = Ax o8 - L0sx 10-1° gm cm/sec

So the kinetic energy is

2

[
=
()

_ (1.05x1071%)?2 oy = 344sx107
2m 2Zm 2x16x10 ¥m m

For the electron, m = 9.11 x 1072% gm

3.445%10727
Ek = Y =378 eV
9.11x10

For the proton,m = 1.67 x 107%% gm
3.445%x107%

E, = = 0.0021 eV
kKT 67x1072 ©

Problem 6. An atomic nucleus is made up of protons and neutrons, collectively
known as nucleons. Calculate the uncertainty in the momentum of a nucleon inside
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a nucleus of mass number A = 64 and radius R = 48 x 10-13 ¢m and hence estimate
its kinetic energy.

Volume of the nucleus is

v=§nR3 =§nx(4.8x10‘13)3 =4632x10"% em®

Hence the volume available for each nucleon is

_V _4632x107%° _ 39 3
== X =724x10"%cm

A

Since the nucleons are strongly attracted by the neighbouring necleons, we
assume that they are more or less confined within the volume v. So the uncertanity

. - . . 4. 3
in the position of a nucleon is equal to the radius r or a sphere of volume v = 3

Hence

13 _391\3
r=(3_v) _(3x7.24x10 122106 P em
4 4m

So the uncertanity in the momentum of the nucleon is

=27
Ap = h 210519

= —=875x10""" gm cm/sec
I 12x10°

Assuming the momentum of the nucleon to be of the order of Ap, we get the

kinetic energy of the nucleon

AP (875x1071%)?
IM 2x1.67x107%* x1.6x107°

Problem 7. An atomic nucleus in an excited state makes transition to the ground
state by the emission of y-ray. If it remains in the excited state for about 10713 sec,
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what is the uncertainty in the energy of the excited state? Compare it with the
uncertainty in the energy of an atomic energy level which has a life time of about
10-8 sec.

Since At = 1073 sec

—27
AE=JL = 11.§>5><10
At 1071 x1.6%x10

= = 656 x 10° MeV = 0.00656 eV

Note that this is also the broadening of the y-ray line during the transition since
the ground state for which At = = has zero energy broadening, ie., AE = 0.

For the atomic energy level, since At = 1078 sec, we have

B 1.05x 10727
== = 6.56 x 108 eV
At 1078 x1.6x10712

AE =

Problem 8. An electron is observed by scattering a beam of protons from it in
a so-called proton microscope. If the electron is initially at rest, show that the
smallest distance within which it can be localized is equal to (M/m,) &, where %
= Ay/2p; A, is the de Broglie wavelength of the proton.

Consider are incident proton of kinetic energy E, to be scattered by the electron
at an angle 9 while the electron recoils at the angle ¢. Then applying the laws of
conservation of energy and momentum we can write (p’ is the scattered proton).

E,=E, +E,

2 2
Pp _ P Pe
2M,  2M, ' 2m,

or,

where p’s are the momenta, we also have
Pp = Py COS8Q + p, cOs
0= pysin0® - p, sing

Squaring and adding we get
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P2 = (pp —Pe c0s0)* + P sin” ¢ = pj +pZ —2ppp. coso

From the energy conservation equation, we also have

Subtracting we have

pe(l+my,/m,)—2p,pe cosd

=
Il

2pp cosd _2m
or, Pe™ 1+4M,/m, M

= ppcostd
p

Thus, the limits of p, are — 2m, p,/M,, and + Zm.p,/M,,.

4me

p
M, P

Hence Ap. =

So from the uncertainty relation

o M M
(A X)pin ~ Ap, pp'4me- 4m, P

=

3.4 The particle in a box

Let us discuss the possible energy states of a particle in a box on the basis of

de Broglie’s hypothesis. Consider a particle of mass m enclosed in a box of length
L with impenetrable walls (Fig. 3.3). Suppose the (bound) particle is moving back
and forth in the x-direction with constant speed v, making perfectly elastic collisions
with the walls of the box. Since the walls of box are impenetrable, the particle cannot
move beyond the walls and so the amplitude of the associated wave must drop to
zero at the walls. In other words, the particle moving back and forth between
opposite walls will form a stationary-wave pattern with nodes at the walls. Wave
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functions of the particle trapped in the box are shown in Fig 3.4. The general formula
for the permitted by Broglie wavelength of the particle is

A

A
A 4

Figure 3.3
A :%,n:l,2,3 (D)

n
The possible values of the momentum of the particle are therefore,

_h_ b
P=3 =ML

n

Consequently, the possible values of the kinetic energy of the particle are

2L

A==

§ \/ 3

Yy A=L

W A=2L
x=0 x=L
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2
E —p—=n2—h

m - . (2)

Thus only certain discrete energy states are possible for the particle bound in a
box. Each permitted energy is called an energy level. The integer n that specifies an
energy level E, is called is quantum number.

3.5 Mathematical Proof of Uncertanity Principle for one
Dimensional Wave-packet

We shall derive the position-momentum uncertainty relation by using the theory
of Fourier analysis. A moving particle corresponds to a single wave group. An
isolated wave group is the result of superposing an infinite number of waves with
different angular frequencies ®, continuous range of wave numbers k and amplitudes
(Fig. 3.5). The composition produces oscillations confined to a single region of space
and thus provides and idealized picture of a localized matter wave.

Figure 3.5

At a certain time t, the wave group y (x) can be represented by the Fourier
intergal.

Y(x)= Tg (k)cos kx dk.
0

Here the amplitude function g (k) describes how the amplitudes of the waves
that contributed to y (x) vary with wave number k. y (x) and g (k) are just Fourier
transforms of each other. Fig. 3.6 shows Gaussian distribution for the amplitude
function g (k) and the wave packet y (x). The relationship between distance Ax and
the wave number Ak depends upo the shape of the wave group and upon how Ax and
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Ak are defined. The widths Ax and Ak obey a reciprocal relation in which the product
As Ak is equal to pure number. The minimum value of the product Ax Ak occurs
when the envelope of the group has the bell shape of a Gaussian function (Fig. 3.6).
Thus, the Gaussian wave packets happedn to be minimum uncertanity wave packets.
If Ax and Ak are taken as the standard deviations of the respective functions y (x)
and g (k), then this minimum value is 1/2. Wave groups in general do not have
Gaussian forms. So we can write

g (k)
- Ak
X
v (x)
— Ax
X
Figure 3.6
Ax Ak > % (D)

Let A be the de Broglie wavelength of the particle. We see from
2n _ 27p
k =
A h

that the momentum of the particle is determined by the wave number k.

— hk

P=on

hAk
=== =hAk
Ap 27

Hence an uncertanity Ak in the wave number of the de Brogile waves associated
with the article results in an uncertainity Ap in the particle’s momentum.
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From Eq. (1) Ax Ak > 1/2 or Ak > 1/2 Ax
AX Ap = h/2 - (2)

This is Heisenberg uncertainty relation for position and momentum, according
to which is uncertanity Ax is measuring the x coordinate of a particle is related to
the uncertanity Ap, in easurning the x component of the momentum, the product of
the uncertainities being equal to or eater than 7/2.

The three-dimensional from of the Heisenberg uncertainty relations for position
and momentum now
AxAp, 22 Ay Ap, 22, Az ap, 22 . 3)
2 yo2 2
The theory of Fourier analysis may also be invoked to obtain a time-energy
uncertamty relation Indeed, according to Fourier analysis, a wave packet of duration
At must be composed of plane have components whose angular frequencies extend
over a range Aw such that At Am = 1/2. Since At = hiw» we therefore, have

At AE = h/2 (4

which is the Heisenberg uncertanity relation for time and energy. It connects the
uncertainty DE in the determination of the energy of a system with the time interval
At available for this energy determination. Thus, if a system does not stay longer than
a time At in a given state or motion, its energy in that state will be uncertain by an
amount AE = #/2 At

3.6 Basic postulates of Wave Mechanics

In the development of Wave Mechanics, there are certain basic postulates, which
are of fundamental importance. The fundamental postulates are three in number.
Other wave properties follow from them.

(1) Each dynamical variable relating to the motion of a particle can be
represented by a linear operator.

Explanation. In classical Physics certain definite functions of suitable variables
are associated with each observable quantity. Thus (x, y, z) are associated with

position, mv is associated with momentum % mv? associated with K.E. and so on.
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Similarly, in wave mechanics and quantum mechanics, certain operators are associated
with observable quantities. For the x-component of the linear momentum of a

particle which has a classical expression p, = m(g—f) we have a quantum mechanical
operator —i(L)i In the vector from, this operator is —i o V. For angular
P 2/ dx ’ P 2wl g

momentum we can write the operator as (r x p) = -1 (;—n)(rxV)‘ Similarly, for the

observable total energy, the classical representation is ﬁ(pi + pi + pg )+ V(x,y,2)

. o hemt( 92 9t P
and the quantum mechanical operatoris =~ 5 ax? + oy + 372 +V(x,y, 2z}

An operator tells us what operation to carry out on the quantity that follows it.

hlg . . N
The operator t(%)g instructs us to take the partial derivative of what comes after

it with respect to t and multiply the result by 1(%)

Table 11.1 summarises the quantum operators for several physical quantities.

Table 11.1. Quantum operators

Quantity Classical definition Quantum operator

Position r r
Momentum iy

b 2m
_ih v
Angular momentum rxp 1 znrx
Kinetic energy p/2m —(h2 f81t2m) v?

Total energy p?/2m +E, (r) —(h?/8m*m)V? + E (r)

(2) A linear eigenvalue equation can be always linked with each operator.
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Example. The total energy operator is 1(%) % Consider the eigen value

A
ot

equation | (L)

> = Ey. Here v is said to be an eigenfunction of the operator

1(%) % and E is called the corresponding energy eigenvalue.

(3) In general, when a measurement of a dynamical quantity a i1s made on a
particle for which the wave function vy, we get different values of a during different
trials. This 1s in conformity with the uncertanity principle. The most probable value
of a is given by

<a>=_[\|;*ﬁwdv
0

where A is the operator associated with the quantity a and y* 1s the complex

conjugate of y. The quantity < a > is called the expectation value of A (that is the
value of a obtained in the majority of the trials). The expectation value of momentum
and energy may be found by using the corresponding differential operator. Thus

<p>= J \p*(—%V)\pdx dy dz

o

<E>= Iw*(i%%)wdxdydz

3.7 Derivation of Time-dependent form of Schrodinger Equation

The quantity that characterises the de Broglie waves is called the wave function.
It 1s denoted by y. It may be a complex function. Let us assume that y is specified
in the x direction by

Y = Agmiolt - ) . (D
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If v is the frequency, then @ = 27tv and v = vA.
W= Ae 2yt - x) . (2)

Let E be the total energy and p the momentum of the particle. Then E = hv and
A = h/p. Making these substitutions in Eq. (2).

W = Ae(ZmihXE — px) .. (3)

Eq. (3) is a mathematical description of the wave equivalent of an unrestricted
particle of total energy E and momentum p moving in the +x directrion.

Differentiating Eq. (3) twice with respect to x, we get

azw __41f52p2
ox2 - h? v - @)

Differentiating Eq. (3) twice with respect to t, we get

oy __2rniE
gt h v - 3
At speeds small compared with that of light, the total energy E of a particle is
the sum of its kinetic energy p?/2m and its potential energy V. V is in general a
function of position x and time t.

2

E=2 4v . (6)
2m

Multiplying both sides of Eq. (6) by y we get

2
_Pv 7
E\p_—zm + Vy .. (7
From Eqs. (5) and {(4) we see that
___h v
By = 2m ot - (8)
S e
and P ‘I’——max—z .. (9)

Substituting these expressions for Ey and p?y into Eq. (7) we obtain
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TN antm T
ih dv __ h2 9y
AE ===+ Vy .. (10)

or -
21 Jt 8 m gx-

Eq. (10) 1s the time-dependent form of Schrodinger’s equation.
In three dimensions the time-dependent form of Schrodinger’s equation is

. 2 2 2 2
ih Y ___h (aw+8w+8w

ih +V
2 ot gim9x? 3y’ 822] v

Schrodinger’s equation : Steady-state form

In a great many situations the potential energy of a particle does not depend
upon time explicility. The forces that act upon it, and hence V, vary with the position
of the particle only. When this is true. Schrodinger’s equation may be simplified by
removing all reference to t. The one-dimesional wave function y of an unrestricted
particle may be written in the form

Y= Ae—{Z‘.lti.-"h)(Et - px)
= Ae—{Z‘.lti.-"E-"h)tl e+(21tip.-"]1)x
Y= \ljoe—(ZTEith)t

Here, W, = Ae™@mrh)x That is, y is the product of a position dependent function
Y, and a time dependent function e<2@EDX

Differentiating Eq. (1) with respect to t, we get

oY _ 2miE .. _—(2miE/ht
=TT Voo - A2)
Differentiating Eq. (1) twice with respect to x, we get
a? 82 e
¥ _9VY o~ (2mE/h)t . 3)

x? ox?
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We can substitute these values in the time-dependent from of Schrodinger’s

equation
ihdv___n: v,
2n 3t gn? y T VY
m 8 m Jx
‘ h? 32%3 —(2mE/h)t —(2miE/h)t
Byge(2piEmt = _ 1 — T2 ¢ T+ Ve :

8nim 9x?

Dividing through by the common exponential factor, we get
m+M(E—V)\|} —0 4)
ox? h? 0

Eq. (5) is the steady-state form of Schrodinger’s equation.
In three dimensions it is

2
V%m+8if%E—vmm=o 5

Usually it is written in the form

2
V21|1+87;—2m(E—V)1|1=0

3.8 Properties of the Wave Function

Physical significance of y. The probability that a particle will be found at a
given place in space at a given instant of time is characterised by the function y (x,
y, z, t). It is called the wave function. This function can be either real or complex.
The only quantity having a physical meaning is the square of its magnitude P = yny*
where y* is the complex conjugate of y. The quantity Pis the probability density.
The probability of finding a particle in a volume dx, dy, dz, is W[?> dx dy dz. Further,
since the particle is certanily to be found somewhere in space.

“‘jllﬂz dx. dy. dz=1

the triple integral extending over all possible values of x, y, z.



88 NSOU e GE-PH-41

A wave function (y) satistying this relation is called a normalised wave
function.

Orthogonal and normalised wave functions. If the product of function y(x)
and the complex conjugate y,*(x) of a function y, (x) vanishes when integrated with
respect to X over the interval a € x £ b, thatis, if

Jws * )y (x) dx=0

then y, and y, are said to be orthogonal in the interval (a, b).

We know that the probability of finding a particle in the volume element dV is
given by yy* dV. The total probability of finding the particle in the entire space, is
of course, unity, 1.e.,

_[|\u|2 dv=1.

where the integration extends over all space. The above equation can also be written
as

Jw* dv=1.
Any wave function satisfying the above equation is said to be normalised to
unity or simply normalised.

Very often y 1s not a normalized wave function. We know that it is possible to
multiply y by a constant A, to give a new wave function. Ay, which is also a
solution of the wave equation. Now the problem is to choose the proper value of A
such that the new wave function is a normalized function. In order that it is a
normalized function, it must meet the requirement.

[(Ay)* Ay dx dy dz=1

or, ‘AZUW*dX dy dz=1

— 1
or, ‘A2|_ IW* dx dy dz
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|A| is known as normalizing constant.
1. It must be well behaved, that is, single-valued and continuous everywhere.

2. If y; (x), ..y, (x) are solutions of Schrodinger equation, then the linear
combination y (x) = a; ¥ (X) + a, Y, + ...a, ¥, (X) must be a solution.

3. The wave function y (X) must approach zero as x — £ e

Eigenfunctions and Eigenvalues. Schrodinger’s time-independent equation is
an example of a type of differential equation called an eigenvalue equation. In
general, we can write an eigenvalue equation as

Fop W = fy
The differential operator F,, operates on a function v, and this yields a constant

f times the function. The function y is them called an eigenfunction of the operator
F,. and the corresponding value for f is called the eigenvalue.

Physical interpretation of ¥ in Schrédinger representation ;

We have seen that the wave function y (x, t) which describes the complete
space-time behaviour of a particle in one dimensional motion has appreciable
amplitudes in those regions where the particle i1s likely to be found with greater
probability. As discussed in § 3.3, quantities which are quadratic in the amplitude of
the wave function are to be interpreted as the probability of finding a particle in a
given region of space.

We shall assume that the quantity
¥ (Xt dx = P* (x, t) ¥ (x, t) dx

is proportional to the probability of finding the particle in the interval x to
X + dx at the time t where W* is the complex conjugate of ¥'. The total probability
of finding the particle anywhere in space is

Peo [ [ (x, ) dx

—

We define the position probability density as
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px =¥ 0P/ |[¥ (<.t dx (3.8.1)

Hence, the total probability will be

P= J P(x,t)dx = I |'~P(x,t)|2 dx/ J |‘1"(x,t)|2 dx =1 (3.82)
This is as it should be, since the total probability must be unit.

Since |Y (x, t)]? is necessarily positive. Eq. (4.6-1) shows that the probability
density p (x, t) is always positive which is consistent with the expected behaviour
of probability.

If ¥ (x, t) is multiplied by a complex constant N such that Wy (x, t}) = Wy
(x, t) where Wy (x, t) satisfies the relation

[ o 0 dx=|NP | (xt) dx=1 (3.83)

then Wy (x, t) is said to be the mormalized wave function. From Eq. (38) we have

2 T 2
|N| =1/ I |‘P(x,t)| dx (3.84)
N is called the normalization constant. Obviously a wave function is normalizable

if J |‘}‘(x,t)|2 dx or more generally _H"P(r,t)\z dr over all space remains finite.
Zeo T

This is known as the square-integrability of the wave function. It should be noted
that since the modulus squared |[NJ? is determined by Eq (38), the normalization
constant N remains undefined to the extent of a phase factor

Using Eqs. (4.6-1), (4.6-3) and (4.6-4), we get
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plx )= [Pux DF=Pyx ) Puix 1) (3.8.5)
Obviously the probability of finding the particle in an interval x to x + dx will be
p (%, t) dx = |Wy (x, D] dx (3.8.6)

The above relations can be generalised for the case of three dimensinal motion
to give

P Oy=¥(@ OP=¥*t)¥ 1) (3.8.7)

2 —
P=[|¥(r,t)f de=1 (388)
T
where W (1, t) is here regarded as normalized and the integration is carred out over
the entire three dimensional space.

Probability current density : Conservation of probability

Since the total probability
jp(r, t)dt= “\p(r, t)|2 dt=1=constant
T T

at every instant of time, any decrease of probability in a given volume element dt
must be associated with the corresponding increase of probability in some other
element. The situation is analogus to the flow of charge from a given volume
element. The change in the total quantity of charge contained in the given volume
element should be equal to the net flow of charge through the surfaces enclosing the
given volume element which is expressed by the equation of continuity :

ap .

—+Vj=0

a0
where p is the charge density and j is the current density. An analogous relation can
be deduced in the case of probability density.

Considering a finite volume T enclosed by the surface S, we calculate the rate
of change of the probability of finding the particle in T :
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9 — 0 [y« - (ﬂ *3_‘P)
atip(r,t)dt atiqj ¥z { oYY dt

3t (3.8.9)

Now W satisfies the Schrédinger equation
Ay n=indw, 1)
ot
Writing H explicity, we have
_ 2 =ind
{ ZmV +V(r,t)}‘1’(r,t) ih at‘{’(r,t)
Assuming V to be real, we get the complex conjugate of the above equation as

__h g2 # —_ip Dy
{ ZmV +V(r,t)}‘]’ (r,t) =—iA="Y*(r,t)

ot
So we have
%—T=#[—%V2+V}\P
%—T=_i17: [—%Vz +V)‘P*
Then %—T‘P+‘P* aa—‘f

N 2 2
S O 23 VRSP VA VR LT [ 22V VPR VT
h _ 2m 2m _

- 2k _qpry?
ISPV WY Y) (3.8.10)

Now we know from vector analysis, that if u and v are two scalars, we can write



NSOU e GE-PH-41 93

V.(uVv) =uV?v+Vu. Vv
V.(vWu)= VW u+Vyv.Vu=vwWiu+Vu vV

Hence V.(uVv—vVu)=uViy-vV2u
So we can write
PVIP P AYIY =V (PVY P £ VYY)

Then we have from Eqgs. 3.8.9 & 3810

9 —_dh *
at:[pdr Zmlv_(ww P YY) d GEIN

We define probability current density as
.k .
j=ig (YVV*-¥*V¥)

Then from Eq. (3.8.11) we get by the application of vector divergence theorem
%Ipdt=—J.V‘jdt=—§|.>sj.ds=—<ﬁsjn ds
T T

Where n denotes the outward drawn unit vector normal to the surface element
dS and j, denotes the normal component of j.

Since Eq. (4.7-9) must hold for any arbitrary volume element, we have

ap .
—+V =0
a0
This expresses the conservation of probability density. As stated above it is
analogous to the classical conservation law of charge (or matter) in the absence of

any source or sink.

Eq. (4.7-8) can also be written as
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'=—E * :i 1 *
i mIm(‘PV‘P ) mRe(l‘PV‘P )

For one dimentional motion, the probability current density is given by

—ih [@d¥* gy d¥
J}‘_Zm(qJ dy ¥ dx)

3.9 Summary

In this chapter the students got introduced to the fundamentals of quantum
mechanics. They have come to know the Heisenberg’s uncertainty principle and its
simple applications. They are introduced to the characteristics of matter wave and the
concepts of wave function, probability density, normalization, observables, operators
and eigenvalues. They have learnt to obtain the time dependent Schrodubger
equation and separate it into time dependent and steady state parts.

3.10 Questions

1. State and explain the Heisenberg’s uncertainty principle. Why does the
principle not reveal itself while working with macroscope object?

2. How and why does the concept of Bohr orbits violate the principle of
uncertainty?

3. Discuss how the wave-particle dualism can be reconciled on the basis of the
uncertainty principle.

4. Show from Heisenberg uncertainty relation, that electron cannot be a
constituent of atomic nucleus.

5. How you would obtain the uncertainty relationship from an analysis for the
hypothetical experiment of detection of y ray photon by microscope?

6. What do you understand by the wave function y of a moving particle? Give
the physical significance of wave function. What are the conditions and
limitations the wave function of a particle must obey?
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7.

10.

Quthine the probability interpretation of the wave function. Obtain and
explain the quantum mechanical probability conservation equation. What
are stationary states? What are they so called?

What is the physical significance of normalization of a wave function? Why
can’t we represent matter waves associated with a free particle by a wave
function y (%, t) = a sin (wt-kx)?

Explain the terms “observable” and “operator”. What is an eigenfunction
and eigenvable?

Starting from the wave equation and introducing energy and momentum of
the particle, obtain the time dependent Schrodinger equation. Separate the
equation into time dependent and time independent parts and obtain the
steady state Schrodinger equation.



Unit -4 O Application of Schriodinger equation to
some simple problems

Structure

4.1 Objective

4.2 Introduction

4.3 Simple Applications of Schrodinger’s Equation
4.4 Concept of Quantum Confinement (QC)

4.5 Potential Step

4,6 The Barrier Penetration Problem

4.7 Summary

4.8 Questions

4.1 Objective

This chapter intends to impart knowledge to the students regarding the following
topics :

e To study the application of Schroédinger equation for one dimensional
infinitely rigid box and to calculate the energy eigenvalues and eigenfunctions
with proper normalization for this problem.

e To study the application of Schrodinger equation in Quantum mechanical
scattering and tunnelling in one dimension : across a step potential and
across a rectangular potential barrier.

4.2 Introduction

This chapter aims to apply the quantum mechanical method for the study of
some simple physical systems. The task would be to set up the Schrodinger’s
equation for the system concerned and to solve it too obtain the energy eigenvalues

96
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and the eigenfunctions and to explain their physical significance. This would provide
some insight into the methods of application of quantum mechanics to physical
problems.

4.3 Simple Applications of Schrodinger’s Equation

The Particle in a Box : Infinite Square Well Potential

Consider a particle moving inside a box along the x-direction. The particle is
bouncing back and forth between the walls of the box. The box has insurmountable
potential barriers at x = 0 and x = L. i.e., the box is supposed to have walls of infinite
height at x = 0 and x = L (Fig. 4.1). The particle has a mass m and its position x
at any instant is given by 0 < x < L.

.—
]
» L >

o0

v
> X

o L
Figure 4.1

The potential energy V of the particle is infinite on both sides of the box. The
potential energy V of the particle can be assumed to be zero between x = 0 and x
= L.
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In terms of the boundary conditions imposed by the probalem, the potential
function is
V=0for0<x<L
V=cforxz0
v=eforx £L
The particle cannot exist outside the box and so its wave function y is 0 for

X £ 0 and x = 1. Qur taks is to find what y i1s within the box. viz., between x = 0
and x = L.

Within the box, the Schrédinger’s equation becomes

2 2
d Y +3T My =0,

dx~ h

2
Putting M= k%, the equation becomes

h-

2
d—l,,p+ k?y =0.
dx”
The general solution of this equation is
Yy = Asin kx + B cos kx.

The boundary conditions can be used to evaluate the constants A and B in
equation (1).

y=0atx=0and hence B=20
y =0 at x = L. Hence 0 = A sin kL

Since A ' kL = np where n is an integer of k = %
Thus Yy, (x)=Asin nLﬁ

. 2h2  hinlgl
The enerfo of the particle = Ep =———==3 N 2
n"m L°8n™'m
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E = n2h2
n 2
8mL

For each value of n, there is an energy level and the corresponding wavefunction
is given by equation (2). Each value of E, is called an eigenvalue and the
corresponding v, is called eigenfunction. Thus inside the box, the particle can only
have the discerete energy values specified by equation t3 Note also that the particle
have zero energy.

The particle in a box : Wave functions

It is certain that the particle 15 somewhere inside the box. Hence for a
normalised wave function

L L
Jw*wdx:HeWAgjﬁnze%g)dle
0 0

2

ie., A

(2 Yoy, [

2

2 nwx

<. The normalised wave functions of the partilce = ¥, =,/Fsin ==

The normalised wave functions y; y, and y; are plotted in Fig. 4.2.

Problem 1. Calculate the permitted energy levels of an electron, in a box 1 A
wide.

Solution. Here, m mass of the electron = 9.1 x 1073 kg;
L=1A=101m,
E, =?
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n’h?
. The permitted electron energies, E, = 5
8mL
i \/
Y2
Y1
x=0 x=L

Figure 4.2

n2(6.626x107>4)?
8(9.1x10731)(10710)2

=6x 10718 n? J = 38n? eV.

The minimum energy, the electron can have, is E; = 38 eV, corresponding to n

The other values of energy are E, = 4E; = 152 eV, E; = 9E; = 342 eV and so
on.

Problem 2. A particle is moving in a one-dimensional box (of infinite height)
of width 10 A. Calculate the probability of finding the particle within an interval of
1 A at the centre of the box, when it is in its state of least energy.

Solution. The wave function of the particle in the ground state (n = 1) is
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2.
WI=J£SIH%

The probability of finding the particle in unit interval at the centre of the box

(x = L12) is
2_| [2 LT 2. 2m_2

= = 1 = 1 ﬂ:=
P“"l‘[ LT ] LM 27T

.. The probability of finding the particle within an interval of Ax at the centre

of the box = W = |y 2 Ax = % Ax

Here, L =10 x 1071m and Ax = 10-10 m,

— 2  _10'%=_p2

W= lox10710

Problem 3. Calculate the expectation value < p, > of the momentum of a

particle trapped in a one-dimensional box.
Solution. The normalized wave functions of the particle are

) (mc) n{x
ax VL VL /L
T b d
Now, P> = IW*(—IEd_X)de
ih 2 T
_ih 2 n® [ nEX . nmx
= T L gsm—L cos—L dx
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=0
The expection value < p, > of the particle’s momentum is 0.

Problem 4. Find the expection value <x > of the position of a particle trapped
in a box L wide.

oo L
2 2 2 NNX

x|w| dx == | xsin® =—dx
.[ L£ L

—oa

Solution. <x >

L
x? _sin(2nmx/L) cos(2nmx /L)

2(x"
L [ 4 dnm/L 8(1‘11th)2

0

2(L).L
=x2=1Ll4) 2

This result means that the average position of the particle is the middle of the
box in all quantum states.

Problem 5. Consider a one-dimensional of length a. There are two electrons in
the box State their quantum numbers and calculate the lowest energy of the system.

Solution. The quantum numbers of the two electrons are

) n=117=0m=0m=+5

2) n

LIiI=0,m=0 m,= —

B2 |—

For lowest energy the electrons are in the ground state. As both the electrons are
in the ground state, the total energy of the system
242
E=2x 00
8ma

Here n = 1
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2
E=_Dh

4ma2

Problem 6. Consider that a one-dimensional box of length a has three electrons.
State the quantum numbers and the lowest energy of the system.

Solution. Here 2 electrons will be in ground state and 1 electron in the excited
state (n = 2) (According to Pauli’s exclusion principle) “No two electrons can be in
the same quantum state”.

(1)n=1,!=0,m;=0,ms=+%
(2)n=1,l=0,m,=0,ms=—%
(3)n=1,!=0,m;=0,ms=+%

The energy of the system

[ .2 2 2.2
ol h2+h2}r(2h2]
Sma Sma 8ma“

[ 6n? }
E = 2
| 8ma

Problem 7. Deduce the zero point energy if the length of the box be 10719 m
and there are 10 electrons in it.
{The Coulomb interaction may be disregarded.)

Solution. The eyergy for a particle in a box

2

n-h
8ma

(2=

E:

(2=

(i) There will be two electrons in the lowest energy level for n = 1
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 p? h?
! Sma2 4ma2

(i1) There are in all 10 electrons, the next 8 electrons will have n = 2. This is
according to the Pauli’s exclusio principle. Here n = 2

8ma2 z

2.2 2
and E2 = 8x |:—2 h :|=—4h
ma

Therfore total lowest energy of the system.

h? | 4h? _ 17h°
]..:=]51+]52=4 2+ 5 =

Here h = 6.624 x 10734 J-s
m=91x103! kg

a=101"m

17 x (6,624 x107*)?
E= 4xo1xi0 %(10710y?

=2.05x10716J

Problem 8. Calculate the mean energy per electron at 0 K if electrons are
enclosed in a long-chain molecule of length 50 A.

Solution. Here energy per electron

2
E_h

8ma2

h= 6624 x 10734 J-s
m=91x103! kg
a=50A=50x1019m
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(6.624 x10724)?
E= exo1x107 % (50x10719)?2

E=24%x1021)

_ 2.4x107%!
1.6x107"

E = 1.5 x 102 ¢V.

Problem 9. Consider that two electrons are confined to a box of length 10719 m.
Calculate the lowest energy of the system.

Solution. Here both the electrons are in the ground state for n = 1.

Energy of the system

E = 2[“2‘12 }
8ma2

2
E - Lﬁ
8ma“
Here h=6624 x 1034 J-s

m=91x103! kg

a=10"1"m

2%(6.624x107°4)?
T 8x9.1x107% x10719)?

E

E=1205x1017)

_ 1.205x10717

eV
1.6x1071°

E = 75.3 eV,
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Problem 10. Consider that there electrons are confined to a one dimensional
box of length 1 A. Calculate the lowest energy of the system.

Solution. According to Pauli’s exclusion principle, for first two electrons n = 1
and for the third electron n = 2.

a=1A=10"m

Total energy of the system

2 2.2
e ()
8ma“ 8ma

6x(6.624%x10734)?
T 8x9.1x1073 x (107192

E=3.615x10"1 ]

~ 3615x107"7

- eV
1.6x10°"7

E = 225,93 eV.

4.4 Concept of Quantum Confinement (QC)

According to Heisenberg uncertanity principle, if a moving particle with a mass
m 1s confined to a region, say Ax length along the x-axis, then the uncertanity in its
momentum {(say Ap,) is given by

Apy = B/Ax which can be simply written as, Ap, :ﬁ‘(cf_ h = h/2m).

The Ap, may be considered as the measure of momentum of the particle along
the x-direction. This confinement along the x-axis, give the particle an additional
amount of kinetic energy given by
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2
(Bpy)” 2
Econﬁnement = m - om ( AX)2

This confinement energy is meaningful, if it i1s comparable to the kinetic energy
(Eym) of the particle due to its thermal motion along the x-direction. Thus the
condition 1s :

E — B, = 1kgT, B2 1y T where izl
confinement — Ty ™ 2 Bls OF, mhi B whnere "

s . |_h® , _
or AX = kaT" or Ax kaT takmg Apx Ax=h

The de Broglie wavelength (Apg) of the particle for its thermal motion along the

x-axis given by :
h h h |_h?
?L = = = = Ax

Thus the condition of quantum confinement of a particle along a particular
direction is :

The dimension of confinement must to be of the order the de Broglie wavelength
(App) for the thermal motion of the particle in the direction,

The above condition tells us how small the dimension must be if we want to
observe the size-dependent quantum confinement.

In general, it can be stated that a nanomaterial is in the state of quantum
confinement when its size is in the order of de Broglie wavelength (Apg) of the
charge carrier (i.e., electron or hole).

In a semiconducting nanoparticle like quantum dot (QD), its size must be
comparable to that of the Bohr radius (rp) of the exciton (i.e., bound electron-hole
pair produced by the absorption of a photon in a semiconductor). This aspect will be
discussed later in detail in Sec. 6.1.2.
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Conditions of quantum confinement : Size = Apg of electron of hole ; size =

2

exciton Bohr radius (rg) in a semiconductor nanoparticle.
2D-Quantum Well : Quantum Confinement along One Direction

Let us consider a 2D-quantum well, where the carrier is allowed to move freely
in the xy-plane while its motion is restricted along the z-axis. Then the quantised
energy levels of the carrier (say electron) can be obtained by solving the following
ID-form of the time-independent Schrédinger equation.

2
{—ld—+V<z>}w<z)=Ew<z>

2m de
o0 o0
A A
E _n2h2
n— 2
8ml
VZOO V:0 V=<><>

—

N

> X-axixX

0 L

Figure 4.3 : Particle In a box model to describe the fate of electrons in nanoparticles

It is a problem similar to ‘particle in a box’ (Fig. 4.3) and V(z) is zero within
the box which extends z = 0 to z = L,. Sloving the Schrodinger equation under the
boundary conditions and infinite depth approximation, we get :

2.2 —
n;h
s Qmi2 (n,, quantum number = 1, 2, 3...)

z

n

h2
Sml 2

z

AE=E, ,;-E, =(2n,+1)
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It indicates that with the decrease of the dimension (L)), the energy level
spacing increases {(of DE p ULZZ and AE >> kgT). In nanomaterials (ie. L, in the

nanoscale), this effect is prominant and the phenomenon is called quantum size
confinement effect.

In the 2D-quantum well, the motion of the carrier is restricted along the
direction perpendicular to the plane of the well (ie, energy levels are quantised in
the direction normal to the well plane) but within the plane of the well, the motion
of the carrier 1s unrestricted. Thus the total energy (E ) of the carrier 1s given by
the sum of energy due to the restricted motion along the z-direction (1.e. quantised
energy) and unrestricted motion in the xy-plane. The in-plane carrier motion is
characterized by a wave vector (k;) which can be express in terms of the wave
vectors for motion along the orthogonal in-plane directions (i.e, x- and y-directions)

as follows -
ky = \!ki + k3

The energy due to the unrestricted in-plane motion is given by :

2.2 2
B, =250 op P jo2m b b
kII_ » O - y = xap _l» -

- C R (2 02
1€, E(kxsky) —%(k\ +kv)

Thus the total energy of the carrier is given by :

n 2 h 2 ]
2D = z h” 2 2
z
S (Free carrier
g gtlilﬁgf;lglt motionin the
effect) xyplne)

EkH,i.e.E(kx’kv) gives the continuous energy states due to the unrestricted

values of k, and k, while En“ gives the quantised and discrete energy levels due to
the restricted values of n,.
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1D Quantum Wire : Quantum Confinement along Two Directions

In a 1D-quantum wire (having regular square or rectangular cross-sections), the
carrier can move freely along the length (say x-direction) while its motion is
restricted in the remaining two orthogonal directions (i.e, y- and z-directions). The
quantised energies along they y- and z-directions can be calculated independently.
The energy due to the free motion along the x-direction can also be calculated. The
total energy of the carrier is given by :

2 2
2,2 122 4202
hn}, h*n; 7°kg

$mL) 8mL; 2m

1D _ —
Etotal _En), .'-EnZ +Ekx -

1l L I o <
2 2
8m Ly 2 2m

Continuous energy

—— e ——— .
Quantised energy states  satesdue to free
due to confinement movement along
along they y—and z—axes  the x—axis

Note : For the quantum wires of complex cross-sections, the quantised energy
states cannot be calculated by separating them in two terms as E_ and Enz . The

. . . .Y .
quantised energy values can be obtained from the numerical solution of the appropriate
Schoddinger equation.

0D Quantum Dot or Quantum Box : Quantum Confinement along Three
Directions

In a OD-quantum dot or quantum box, the carrier motion is restricted within the
nanoscale in all three orthogonal directions (i.e. X, y and z-axes). For a simple cuboid
shape nanocluster of dimensions L, L, and L,, the quantised energy values in three
directions can be obtained separately. The total energy is given by

, .nz n2 n?. .
oD h X Y z
=E_. +E. +E = —|—+—+—=
Ny Ny,n, n, n, n, m 7 7 7
L1

Quantised energy states along
the three orthogonal directions.
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Note : In all the above energy expressions, the carrier mass m should be
replaced by effective mass m™*.

Here each energy state is fully quantised and the energy difference between the
successive discrete energy states is greater than the thermal energy (i.e. DE > kgT)
as in atoms (cf. continuous energy states in a 3D-bulk material). In reality, the
quantum dot (QD), a OD-particle, may not be necessarily cuboid-shaped and in such
cases, a more complicated relationship showing the quantum confinement may be
developed.

4.5 Potential step

The potential functional of a potential step is defined by
vx) =0 x <0
= VO x>0

Let electrons of energy E move from left to right, i.e., along the positive
direction of x-axis (Fig. 4.4). It is desired to find the eigenfunction solutions of the
time-independent Schrodinger equation.

v
Region I
v (%) =0 0 Region 1T
Incident

articles

VAL

o
\/ U Potential
Real part of
Y (x) when E
Figure 4.4
dz\lf 2m
dX_2+h_2(E_V)W:O ..... (2)

For I region V(x) = 0. Therefore, the Schrodinger equation takes the form
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d*y  2mE
The solution of Eq. (3) 1s
wlAeiplx"h+Be_iplxm )

where A and B are constants.
p; =4/(ZmE)
Some particles may be reflected by the potential barrier and some transmitted.
The first and second terms respectively represent the incident and reflected particles.

The Schrodinger wave equation for II region is

dZ
T+i—‘2“(E—Vo)w=0 . (5)

The solution of Eq. (5) 1s

ll!z =Ceip2}\'fh +De—ip2}\'fh (6)

where p, = ,/| 2m(E-V, ):|; C and D are constants.

In Eq. (6), the first term represents the transmitted wave. The second term
represents a wave coming from + in the negative direction. Clearly for x > 0 no
particles can flow to the left and D must be zero. Therefore, Eq. (6) becomes

v, _ CelP2R /R e
The continuity of y implies that y, = y, at x = 0

A+B=C .. (8)
The continuity of ill—l)l: implies that %= d:ll;z at x = 0.

p1 (A - B)=pC (9

Solving (8) and (9) we get
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P1— P

= —=A
B= T, .10
2py
= A
and C= o, e

B and C represents the amplitudes of reflected and transmitted beams respectively
in terms of the amplitude of the incident wave.

The reflectance and the transmittance at the potential discontinuity may be
defined as follows :

magnitude of reflected current
~ magnitude of incident current

Reflectance

magnitude of transmitted current
magnitude of incident current

Transmittance T=

Two cases may rise - (1) E > V; and (1) E < V,
Case (1) : E > V,. When E > V, p, = J[2m(E—-V;;)] is real.
We will now derive expressions for the current density in the I and II regions.

The probability current i1s defined as

_ P yrvy— %
J= S =[w* V- yVy ] - (12)

S U= 2im v dx _%K

I LY d%]

= - h

_[{(Ae_pl}{/h +Be—iP1X»"ﬁ)X[iﬂJ(A*e—pIX/ﬁ +B*eiplx/h)}:|
]
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P(AAZETD)  Puflap - o] - (13)

m m

From the above relation it 1s evident that the current in the I region is equal to
the difference between two terms. The first term which is proportional to p; |A]
represents the incident wave. The second term which is proportional to p;|BJ?
represents the reflected wave.

The probability current 2Py
- =[A"— . (14)

of the incident beam m

The probability current 2Dy
=|B|"— . (15)

of the reflected beam m

This expression for the probability current in region II is

h dy, _ dy;
(Jx)][= %[%* dx —V2 ]

% |:{C %* e—ipzxﬁc (lp?z] Ceipgxfh }_ {Ceipgxﬁc (lp?z] C* e—ipzxﬁc }}

= |C|2 P2
m

.. (16)

Eq. (16) represent the transmitted current.

magnitude of reflected current
magnitude of incident current

B[ (p, /m)
|AF (p, /m)

R—Mf Eq. (10 17
T (p+py)? oM Ea-U1O) - (17
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magnitude of transmitted current
magnitude of incident current

) (p; /m)
|Af (p, /m)

2
2p Py
= |——— | XxX— fr Eq. (11

[P1+132J p, om Ea. (11)

4p1p;

(p1+p2)2 ... {18)

T:

Case (ii). E < V5. When E < V,, p, = [2m(E-V,)] is imaginary.

Hence p, = ([2m(E-V,)] and p; =-if[2m(V, -E)] = -p,

The probability current in this case is given by

| oedwy v
s 2im V2 dx V2 dx]

_ B | oremipax/ [ip_z)ceipzxfh _ CelP2x/ (_lp_z] e Y ]
] h

Substituting p,* = — p, we get,

Jx _ -Zir:n |:C=t<eil3'2x”I (ipTlZ)ceiPzXf’h _CC*(%)eipzxmeipzxm}

=0
Thus the transmitted current is zero.

magnitude of transmitted current 0
magnitude of incident current
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T=0
By definition, R + T =1
: R=1 ... (20)

4.6 The Barrier Penetration Problem

Consider a beam of particles of kinetic energy E incident from the left of a
potential barrier of height V and width OA = L (Fig. 4.5). V > E and on both sides
of the barrier, V = 0, which means that no forces act upon the particles there. This
potential is described by

V =0forx<0 (region 1)
V =Vifor0<x<L (region II)
V =0 forx>L (region I1I) . (D

Let y;, v, and 3 be the respective wave function in regions, I, II and IIT as
indicated in the figure.

V=0

Potential
energy V(x)
T
<

Incident + reflected wave

V=0
Transmitted wave

Figure 4.5

The corresponding Schriodinger equations are

d? 2
region I lgl +8m ;nEllfl =0 since V=0
dx h
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) dz‘l’z 87°m
region II —5+=5 (E-V)y, =0 (= V=YV)
dx h
d? 2
region III Vs ¢ 8TmEy —0 (0 V=0) @)

dx~ h~°

2 87’m(V-E
8n"mE _ 2 4 877 m( )=[32

Put 02 L2
Then the equations become

d? Wy

ion I +0c2q1 0
region =
23 dX2 1

d2

region II —w22+[321|!2 =0 .. (3)
dx
d2

region III ‘I? +0€21|!3 =0
dx

The solutions to these equations are

region | v, = Ael®* | Bemiox
region 11 W, =Fe B 1 GePx &)
region III A = Cel¥ 4 De 10X

Where the constants A, B and so on are the amplitudes of the corresponding
components of each wave. They may be recognized as follows :

A is the amphtude of the wave, incident on the barrier from the left,
B is the amplitude of the reflected wave in region I,
F is the amplitude of the wave, penetrating the barrier in region II,

G 15 the amplitude of the reflected wave (from the surface at A) in region II,
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C 1s the amplitude of the transmitted wave, in region III, and
D is the amplitude of a (nonexistent) reflected wave, in region III

It should be noted that we have drawn the wave function through the three
regions in Fig 4.5 so that it is continuous and singly valued everywhere along the
X-axis.

Since the probability density associated with a wave function is proportional to
the square of the amplitude of that function, we can define the barrier transmission
coefficient as

el
T=1—
A

and a reflection coeflicient for the barrier surface at x = 0 as

B[
R=—,)
AT

If the barrier is high, compared to the total energy of the particle, or is thick
compared to the wavelength of the wave function, then the transmission coeflicient
becomes

~16E(1_E __2L Z
T~16V(l V)exp[ (hmn),/zm(v E)]

where L is the physical thickness of the barrier The ratio is also called

e[’
Al
the ‘penetrabilny’ of the barrier. It represents the probability that a particle incident
on the barrier from the side will appear on the other side. Such a probability is zero
classically. But a finite quantity in quantum mechanics. We thus conclude that if a
particle with energy E is incident on a thin energy barier of height greater than E,
there is a finite probability of the particle penetrating the barrier. This phenomenon
is called the tunnel effect. This effect was used by George Gamow in 1928 to explain
in process of ¢-decay by radioactive nuclei.
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Problem 1. The potential barrier problem is a good approximation to the
problem of an electron trapped inside but near the surface of a metal. Calculate the
probability of transmission there 1.0 eV electron will penetrate a potential barrier of
4.0 eV when the barrier width is 2.0 A

Solution. From equation (7) the transmission coefficient is
1.0eV '1 1.0eV
T =16 {230ev | " 20ev

_2x2x107%m
1.05%1974 15

Xexp [ \/2(9.1x10_31kg)(4—1)(1.6><10_191)]

=~ 0.084

Thus, only about eight 1.0 eV electrons, out of every hundred, penetrate the
barrier.

Problem 2. Calculate the width of the potential barrier of an o particle emitted
with kinetic energy 4 MeV from a radioactive atom of atomic weight A = 222 and
atomic number Z = 86.

Solution. Here 1y = (1.5 x 10713) A3, But A = 222

o= (1.5 x 10-15) (222)173
r= 9x10Pm

Let r; be the distance from the centre of the nucleus where potential energy of
the a particle is equal to the kinetic energy.

AZ-2)e?
41‘-:80ri

2Z-2)e?
4neyE

Here Z

86

= 9x10°
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e= 1.6x101°C
E= 4MeV=4x10%x16x1017]
or E= 64x1013]

2%84%(1.6x10717) x9x10°
6.4x107"3
r, = 6048 %1015 m
Width of the potential barrier
a=r1-rp
or a= 6048 % 10715 = 9 x 10-15
= 5148 x 1015 m

r =

Problem 3. A beam of electrons is incident on a potential barrier 5 eV high, 0.5
nm wide. What energy should they have if half of them are to get through the
barrier ? [GN.D.U,, 1992]

h = 1.054 %10 J-s

Solution. Here V,= 5eV=5x16x%x10"17]

Vo= 8x 10107
m= 9.1x103 kg
a= 05m=05%x10"m
a= 5x101m
- 1
T= 3
E= 7
1
T =
mVOZa2
1+ 5
2Eh

2.2
v
I L |
2ER? T

mVja® | ( ! ) .
2Bn2 T
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mV& a’
2Eh?

E =

(9.1x1073 )8 x10717) x(5x1071%)2
2x(1.054x10734)?

65.53 x 107197

(s
Il

65.53 x1071°
1.6x1071°

= 4095 eV

eV

Problem 4. Calculate the zero point energy of a system, constrained to move
only in one direction, consisting of mass 1 gram connected to fixed point by a spring
which is stretched 1 cm by a force of 1,000 dynes. [Delhi]

Solution. Displacement
X = A sin 27 vt

Restoring Force = 47°r? mx

Here m= 10-kg
x= 102 m
F= 10°N

F = 422 (107%) x (102)
102 = 4m2v2 (10°5)

4n2v2 = 1000

1

o v = (1000)2
2

Zero point energy

U= —=hv
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1
U= 66x107*x(1000)2
2x2x%x3.14

U= 1.66x1033]

4.7 Summary

The students have gathered knowledge about how to apply Schrodinger’s
equation for the study of some simple systems. They have studied the application of
Schrodinger equation for one dimensional infinitely rigid box and calculated the
corresponding energy eigenvalues and eigenfunctions with proper normalization.
They also have applied the Schrodinger equation to study the Quantum mechanical
scattering and tunnelling in one dimension, across a step potential and across a

rectangular potential barrier respectively.

4.8 Questions

1.

LN

Set Schrodinger equation for a particle confined in a one dimensional
infinite square well potential. Solve the equation to obtain the normalized
wave function for the particle. Calculate the eigenfunctions and corresponding
eigenvalues of momentum and energy.

How do the energy levels for a particle inside a box depend upon the box
width a? What are the ground state and excited states? Draw the energy
level diagram. Explain the term “degeneracy”.

A particle of mass m i1s confined to a one-dimensional box of width 1.
Derive expression for (i) the wave function and the (i1) probability density
of the particle. Show these on separate graphs.

A particle of energy E <V, is approaching a potential barrier of hight V.
Use quantum mechanical ideas to find the probability that the particle will
leak through.

A particle of energy E > V, 1s incident on a finite potencial barrier of height
V. Write the Schrodinger equation and the form of the wave function in
different regions.



Unit - 5 O Atomic Nucleus and its Structure

Structure

5.1 Objective

5.2  Introduction

5.3 Atomic Nucleus and its structure
5.4 Summary

5.5 Questions

3.1 Objective

In this chapter you will learn about atomic nucleus and its properties.

5.2 Introduction

All nuclei are composed of two types of particles : protons and neutrons. The
only exception is the ordinary hydrogen nucleus, which is a single proton. There are
strong force which hold the particle together by overcoming the opposing coulomb
force. The are certain kind of particle exchange which generates such a strong
holding force.

5.3 Atomic Nucleus and its structure

Size and structure of atomic nucleus and its relationship with atomic weight

All nuclei are composed of two types of particles : protons and neutrons. The
nucler of all atoms of a particular element must contain the same number of protons,
but they may contain different numbers of neutrons. Nuclei that are related in this
way are called isotopes. The isotopes of an element have the same Z value, but
different N and A values. The natural abundances of isotopes can differ substantially.
For example,

2c, 12¢, 2c and 1C
are four isotopes of carbon. The natural abundance of the %C isotope is about

123
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98.9%, whereas that of the 12C isotope is only about 1.1%. Some isotopes don’t
occur naturally, but can be produced in the laboratory through nuclear reactions.

Mass
Particle kg u MeV/c?
Proton 1.6726 x 1027 1.007276 938.28
Neutron 1.6750 x 1027 1.008665 939.57

Size of Nuclei

The size and structure of nuclei were first investigated in the scattering
experiments of Rutherford. Using the principle of conservation of energy, Rutherford
found and expression for how close an alpha particle moving directly towards the
nucleus can come to the nucleus before being turned around by Coulomb repulsion.

Rutherford found that alpha particles approached to within 3.2 x 101 m of a
nucleus when the foil was made of gold, implying that the radius of the gold nucleus
must be less than this value. For silver atoms, the distance of closet approach was
2.3 x 10°'* m. From these results, Rutherford concluded that the positive charge in
an atom is concentrated in a small sphere, which he called the nucleus, with radius
no greater than about 10°'4 m. Because such small lengths are common in nuclear
physics, a convenient unit of length is the femotometer (fm), sometimes called the
fermi and defined as 1 fm = 101> meter.

Nuclei are approximately spherical and have an average radius given by
r = rpAl3

where 1, is a constant equal tp 1.2 x 101> m and A is the total number of nucleons.
This relationship then suggests all nuclei have nearly the same density. Nucleons
combine to form a nucleus as though they were tightly packed sphers.

Figure 5.1 : A nucleus is a cluster of tightly packed sphere, each of which is nucleon
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Impossibility of an electron being in nucleus as a consequence of the uncertanity
principle :

The size of nucleus is 10-1°m. If electron exists within nucleus then uncertainty
in position is 10715 m. If the uncertainty in momentum is Ap then we can write as per
Heisenberg uncertainty principle

AXAp~h

_ h
© 2mAX

Ap

_ 6.63x10°34

21 x10-15
Ap = 1.05 x 10719 kg.m/s

Now we know E=p2c® mic* =T+ my?

Where T is the kinetic energy of the electron. Putting the value of electron we
get
T =19.3 MeV
If the electron stays within the nucleus, then its kinetic energy at least 19.3 MéeV.
However, the kinetic energy of electron emitted in B-decay is around 4 MeV. So, we
can conclude that the electron cannot stays within nucleus.

Nature of nuclear force :

Given that the nucleus consists of a closely packed collection of protons and
neutrons, you might be surprised that it can even exist. The very large repulsive
electrostatic forces between protons should cause the nucleus to fly apart. Nuclei,
however, are stable because of the presence of another, short-range (about 2-fm)
force : the nuclear force, an attractive force that acts between all nuclear particles.

The protons attract each other via the nuclear force, and at the same time they
repel each other through the Coulomb force. The attractive nuclear force also acts
between pairs of neutrons and between neutrons and protons. The nuclear attractive
force is stronger than the Coulomb repulsive force within the nucleus (at short
ranges). If it were not, stable nuclel would not exist. Moreover, the strong nuclear
force is nearly independent of charge. In other words, the nuclear forces associated
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with proton—proton, proton—neutron, and neutron— neutron interactions are
approximately the same, apart from the additional repulsive Coulomb force for the
proton—proton interaction.

There are about 260 stable nuclei; hundreds of others have been observed, but
are unstable. A plot of N versus Z for a number of stable nuclel is given in Figure
2. Note that light nuclei are most stable if they contain equal numbers of protons and
neutrons so that N = Z, but heavy nuclei are more stable if N > Z. This difference
can be partially understood by recognizing that as the number of protons increases,
the strength of the Coulomb force increases, which tends to break the nucleus apart.
As a result, more neutrons are needed to keep the nucleus stable because neutrons
are affected only by the attractive nuclear forces.

In effect, the additional neutrons “dilute” the nuclear charge density. Eventually,
when Z = 83, the repulsive forces between protons cannot be compensated for by the
addition of neutrons. Elements that contain more than 83 protons don’t have stable
nuclei, but, rather, decay or disintegrate into other particles in various amounts of
time
Binding energy:

The total mass of a nucleus is aways less than the sum of the masses of
its nucleons. Also, because mass is another manifestation of energy, the total energy
of the bound system (the nucleus) is less than the combined energy of the separated
nucleons. This difference in energy is called the binding energy of the nucleus
and can be thought of as the energy that must be added to a nucleus to break
it apart into its separated neutrons and protons.

It's interesting to examine a plot of binding energy per nucleon, BE/A, as a
function of mass number for various stable nuclei (Fig. 5.3). Except for the lighter
nuclei, the average binding energy per nucleon is about 8 MeV. Note that the curve
peaks in the vicinity of A = 60, which means that nuclei with mass numbers greater
or less than 60 are not as strongly bound as those near the middle of the periodic
table. As we'll see later, this fact allows energy to be released in fission and fusion
reactions. The curve is slowly varying for A > 40, which suggests the nuclear force
saturates. In other words, a particular nucleon can interact with only a limited
number of other nucleons, which can be viewed as the “nearest neighbours’ in
the close-packed structure of a nucleus.
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Figure 5.3 : Binding energy per nucleon versus the mass number A for nuclei

Semi-empirical mass formula:
The binding energy can be expressed as

where a, (the volume term constant) and as (the surface term constant) are
parameters to be determined from data.

Bp = a,A — a,A?3
The above expression for the binding energy is a reasonable approximation but

does not reproduce a lot of the effects we have already seen. It predicts that the
ground state binding energy only depends on A but is independent of Z or N, which
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we have already seen is not correct. It ignores quantum effects such as the Pauli
exclusion principle {and others) completely. To get a better agreement we need to
add three more terms which explicitly depend on Z and N.

The first term we will now add is easy to understand. We know there is an EM
repulsive force between protons due to their charge and so this will reduce the
binding energy for nucleons with several protons. As we believe the nuclear force
itself is independent of nucleon type, then the protons will on average be spread
evenly throughout the nucleus, which means the charge density is uniform. It is a
standard problem in electrostatics to calculate the energy required to assemble a
sphere of uniform charge density and the result is

2

Q

3. L&
S54rn EO I'O

For a nucleus with Z protons, this self-energy is therefore

-2 =-a
541’{60 i A]a"3 ¢ Al/?)

2 2 2
mB =-3_¢ 7 V4

where ac = 0.72 MeV. Note the dependence on Z2, not Z; the EM force is long range
and so every proton affects every other proton in the nucleus, not just its nearest
neighbours. Contrast this to the short range nuclear force where the nucleons only
affect their nearest neighbours and the energy depends on A In fact, although this
72 form is often used, strictly speaking it is not quite right. The energy given by the
expression above is that needed to spread all the charge out throughout all space to
an infinitely small density. However, the binding energy is defined as the energy
need to break the nucleus into its constituent nucleons, i.e. break it into neutrons and
protons, but not to spread the individual proton charges out. Indeed, the equation
says even one proton, i.e. Z = 1, gives a correction to the binding energy, even
though there is nothing to repel it. This means the correction to the binding energy
should not be quite as big. A better form is

a.Z(Z - 1)/Al3

which is now zero for Z = 1. Clearly, for large Z, as found in large nuclei, these two
are very similar. We now have
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2/3
By =a ,A-a A" " —a,
This by itself breaks the independence on Z but clearly predicts the biggest binding
energy for any A will be for Z = 0 or 1. We know this isn’t right as we have stable nuclei

with all values of charge up to Z > 100 in the atomic periodic table. We need to add two
more terms to account for quantum effects.

The next term is called the “asymmetry term”. The idea here is identical to the
concept of a Fermi level in the physics of materials. The nucleons have energy levels
in the nucleus and, being spin 1/2 particles, then each level can take two of each type
of nucleon.

_H

——@—
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P —
= = —@—0—
p n
Figure 5.4

If a nucleus purely from neutrons, as implied by the terms it is so far for the binding
energy, it would have to be put into higher and higher energy levels and so would be
less and less strongly bound, reducing the binding energy. Clearly, putting protons into
the nucleus instead would be beneficial for the binding energy as they could go into the
deepest empty proton levels. It is clear the best situation is when the two are evenly
balanced with N = Z. The details of the exact energy levels and numbers per level will
be messy and vary with A, but a reasonable parametrisation turns out to given by ABE
o — (N — Z)?, i.e. the binding energy is reduced symmetrically for either N > Z or Z >
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N. In fact, the spacing between states depends inversely on the size of the nucleus, so
that larger nucler have less of a binding energy loss if N # Z, hence, the full term used
1s

—a, (N - Z)%A

The final term which 1s needed 1s called the “paining term”. This occurs because of
the different overlap of wavefunctions for pairs of nuclei in various states. For two
identical nucleons in the same spatial state, with opposite spins to be antisymmetric as
required, then the spatial wavefunctions are effectively identical and have maximal
overlap. Because of the short range force, this gives more of a binding energy for this
particular pair. This effect occurs for all nucleons except potentially the ones in the
highest occupied energy level for each type of nucleon, where there is either one or two
nucleons of that type. Hence, the nucleus will be more strongly bound for ones with an
even number of nucleons of either type. There are three cases

1. Even-even, meaning an even number of both protons and neutrons, and hence
even A. This has both pairs strongly bound.

2. Odd-odd, meaning an odd number of both protons and neutrons, and hence also
even A. This 1s the least strongly bound.

3. Even-odd, meaning an even number of one type and an odd number of the other,
and hence odd A. This has one strongly bound pair and so should be half way m between
the previous two.

This is therefore simply parametrised by a form ay/Al2, where apis takes its
positive value for even-even nuclei, its negative value for odd-odd nuclei and 1s zero for
even-odd nuclei. Note, the 2 pairing term implies even-even nuclei always have the spins
of the nucleons in the same spatal state parallel, so all such nuclel would be expected
to have ground states with total spin zero; this is observed to be true.

Therefore, the total expression for the binding energy is
Z(Zz-1)  (N-Z) 1

a +a
a
A3 A P AI2

_ 2/3
Bg = aUA—aSA —-a,

and this 1s the semi-empirical mass formula. The best-fit parameters take values
around a, = 15.8 MeV, a; = 183 MeV, a. = 0.71 MeV, a, =232 MeV and a, + 11.2
MeV.
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5.4 Summary

We have seen nuclear force is acting in short range and it i1s much more stronger
than Coulomb repulsion. The nucleus is highly dense, and density of nucleus is
almost same for all the elements.

5.5 Question

1. What 1s nuclear force ?
2. What is the range of nuclear force ?

What is binding energy 7

LN

Binding energy depends on which factors ?

A

What 1s semi empirical mass formula ?
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6.6 Y-ray emission
6.7 Summary

6.8 Questions

6.1 Objective

In this umit you will learn about radioactivity, decay of nucleus and energy
released due during radioactivity.

6.2 Introduction

In 1896 Becquerel accidentally discovered that uranium salt crystals emit an
invisible radiation that can darken a photographic plate even if the plate is covered
to exclude light. After several such observations under controlled conditions, he
concluded that the radiation emitted by the crystals was of a new type, one requiring
no external stimulation. This spontaneous emission of radiation was soon called
radioactivity. Subsequent experiments by other scientists showed that other substances
were also radioactive.

The most significant investigations of this type were conducted by Marie and

Pierre Curie. After several years of careful and laborious chemical separation
133
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processes on tons of pitchblende, a radioactive ore, the Curies reported the discovery
of two previously unknown elements, both of which were radioactive. These
elements were named polonium and radium. Subsequent experiments, including
Rutherford’s famous work on alpha-particle scattering, suggested that radioactivity
was the result of the decay, or disintegration, of unstable nuclei.

6.3 Radioactivity

Three types of radiation can be emitted by a radioactive substance : alpha (a)
particles, in which the emitted particles are ,He* nuclei; beta (b) particles, in which
the emitted particles are either electrons or positrons; and gamma (g) rays, in which
the emitted “rays” are high-energy photons.

Observation has shown that if a radioactive sample contains N radioactive
nucler at some instant, the number of nuclei, AN, that decay in a small time interval
dt 1s proportional to AN; mathematically,

AN

AN

AN = AnAt

where 1 is a constant called the decay constant. The negative sign signifies that N
decreases with time; that is, AN is negative. The value of | for any isotope determines
the rate at which that isotope will decay. The decay rate, or activity R, of a sample
is defined as the number of decays per second. The decay rate is

Isotopes with a large 1 value decay rapidly; those with small | decay slowly.
Integrating the above equation we get
N = Noe_:“t

where N is the number of radioactive nuclei present at time t, N, is the number
present at time t = 0, and € = 2.718 . . . is Euler’s constant.
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Figure 6.1 : Plot of the exponential decay law for radioactive nuclei

Mean life and half-life :

The half-life of a radioactive substance is the time it takes for half of a given
number of radioactive nuclei to decay. From decay equation it can be shown that

”

N-Nof})

where n is the number of half-lives. The number n can take any nonnegative value
and need not be an integer.

Also we can write from the decay equation that

&zNOe—XTNz

6.4 o-decay

If a nucleus emits an alpha particle (,He?), it loses two protons and two
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neutrons. Therefore, the neutron number N of a single nucleus decreases by 2, Z
decreases by 2, and A decreases by 4. The decay can be written symbolically as

4 A-4 4

where X is called the parent nucleus and Y is known as the daughter nucleus. As
examples, 238U and ?2°Ra are both alpha emitters and decay according to the schemes

238 234 4

226

222
sgRa —

éoRn + gHe

The half-life for 238U decay is 4.47 x 10? years, and the half-life for 22°Ra decay
is 1.60 x 10° years. In both cases, note that the mass number A of the dauther nucleus
is four less than of the parent nucleus, and the automic number Z is reduced by two.
The differences are accounted for in the emitted alpha particle (the “He nucleus).

When one element changes into another, as happens in alpha decay, the process
is called spontaneous decay or transmutation. As a general rule, (1) the sum of the
mass numbers A must be the same on both sides of the equation, and (2) the sum
of the atomic numbers Z must be the same on both sides of the equation.

For alpha emission to occur, the mass of the parent must be greater than the
combined mass of the daughter and the alpha particle. In the decay process, this
excess mass 15 converted into energy of other forms and appears in the form of
kinetic energy in the daughter nucleus and the alpha particle. Most of the kinetic
energy is carried away by the alpha particle because it 1s much less massive than the
daughter nucleus. This can be understood by first noting that a particle’s kinetic
energy and momentum p are related as follows :

Because momentum is conserved, the two particles emitted in the decay of a
nucleus at rest must have equal, but oppositely directed, momenta. As a result, the
lighter particle, with the smaller mass in the denominator, has more kinetic energy
than the more massive particle.
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6.5 B-decay

When a radioactive nucleus undergoes beta decay, the daughter nucleus has the
same number of nucleons as the parent nucleus, but the atomic number is changed
by 1.

A A -

A A +

Again, note that the nucleon number and total charge are both conserved in
these decays. However, these processes are not described completely by these
expressions. A typical beta decay event is

14 14 -
«cC = s N+e

The emission of electrons from a nucleus is surprising because, the nucleus is
composed of protons and neutrons only. This apparent discrepancy can be explained
by noting that the emitted electron is created in the nucleus by a process in which

a neutron 1s transformed into a proton. This process can be represented by

én - }p + e

As with alpha decay, we expect the electron to carry away virtually all this
energy as kinetic energy because, apparently, it is the lightest particle produced in the
decay. As Figure 5 shows, however, only a small number of electrons have this
maximum Kinetic energy, represented as KE,, on the graph; most of the electrons
emitted have kinetic energies lower than that predicted value. If the daughter nucleus
and the electron aren’t carrying away this liberated energy, where has the energy
gone? As an additional complication, further analysis of beta decay shows that the
principles of conservation of both angular momentum and linear momentum appear
to have been violated
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Number of B-particles

Kinetic energy

Fig 5.2 : Kinetic Energy of emitted beta particle

In 1930 Pauli proposed that a third particle must be present to carry away the
“missing” energy and to conserve momentum. Later, Enrico Fermi developed a
complete theory of beta decay and named this particle the neutrino (“little neutral
one”) because it had to be electrically neutral and have little or no mass. Although
it eluded detection for many years, the neutrino (n) was finally detected experimentally
in 1956. The neutrino has the following properties :

m Zero electric charge
B A mass much smaller than that of the elctron, but probably not zero. (Recent
experiments suggest that the neutrino definitely has mass, but the value is
uncertain, perhaps less than 1 eV/c?).
. 1
B A spin of =
2
B Very weak interaction with matter, making it difficult to detect

With the introduction of the neutrino, we can now represent the beta decay process

Be 5 UN + e+ ¥
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The bar in the symbol % indicates an antineutrino. To explain what an

antineutrino is, we first consider the following decay :
I%N - I%C +e" +v

Here, we see that when 12N decays into 12C, a particle is produced that is
identical to the electron except that it has a positive charge of le. This particle is
called a positron. Because it 1s like the electron in all respects except charge, the
positron is said to be the antiparticle of the electron. In beta decay, an electron and
an antineutrino are emitted or a positron and a neutrino are emitted.

6.6 y-ray emission

Very often a nucleus that undergoes radioactive decay is left in an excited
energy state. The nucleus can then undergo a second decay to a lower energy state—
perhaps even to the ground state—by emitting one or more high-energy photons. The
process is similar to the emission of light by an atom. An atom emits radiation to
release some extra energy when an electron * jumps” from a state of high energy to
a state of lower energy. Likewise, the nucleus uses essentially the same method to
release any extra energy it may have following a decay or some other nuclear event.
In nuclear de-excitation, the * jumps” that release energy are made by protons or
neutrons in the nucleus as they move from a higher energy level to a lower level. The
photons emitted in the process are called gamma rays, which have very high energy
relative to the energy of visible light.

A nucleus may reach an excited state as the result of a violent collision with
another particle. It’s more common, however, for a nucleus to be in an excited state
as a result of alpha or beta decay. The following sequence of events shows the decay

B - lc* v+ e + @

12 ~ % 12
C* - KC + v

12C*, where the asterisk indicates that the carbon nucleus is left in an excited
state following the decay. The excited carbon nucleus then decays to the ground state
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by emitting a gamma ray. Note that gamma emission doesn’t result in any change in
either Z or A,

6.7 Summary

We have seen that some natural elements and artificial elements shows
radioactivity. The decay time is different for different element ranging from few
seconds to few thousands’ years. Radioactivity 1s used in carbon dating and in
treatment and diagnosis of diseases.

6.8 Questions

1. What is Radioactivity ?
What is half Lfe ?
What 1s mean life ?

What 1s alpha and beta decay ?

A

Mention few uses of radioactivity.
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7.1 Objective

® To get knowledge about nuclear fission and fusion.
® To know about Nuclear reactor and risk involved to manage a reactor.

® To get knowledge about thermos nuclear reactions.

7.2 Introduction

There are two means by which energy can be derived from nuclear reactions:
fission, in which a nucleus of large mass number splits into two smaller nuclei, and
fusion, in which two light nuclei fuse to form a heavier nucleus. In either case, there
is a release of large amounts of energy that can be used destructively through bombs
or constructively through the production of electric power.

7.3 Fission and Fusion

Nuclear Fission :

Nuclear fission occurs when a heavy nucleus, such as 233U, splits, or fissions,
into two smaller nuclei. In such a reaction the total mass of the products is less
than the original mass of the heavy nucleus.

141
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The fission of 233U by slow (low-energy) neutrons can be represented by the
sequence of events.

5n+ 233U - ZggU* — X + Y + neutrons

where 23U* is an intermediate state that lasts only for about 10712 s before splitting
into nuclei X and Y, called fission fragments. Many combinations of X and Y satisfy
the requirements of conservation of energy and charge. In the fission of uranium,
about 90 different daughter nuclei can be formed. The process also results in the
production of several (typically two or three) neutrons per fission event. On the
average, 2.47 neutrons are released per event.

A slow neutron The neutron is absorbed by The nucleus After the event, there
approaches a the 233U nucleus, Chanding deforms and are two lighter nuclei
235U nucleus. it to 236U*_ which is a 236U oscillates like and several neutrons.
nucleus is an excited state. a liquid drop.
N\ N
2357y 2367 % ’ — =

) w y
N _ . J/

Before fission \

After ﬁssion_
Figure 7.1 A nuclear fission event as described by the liquid drop model of the nucleus.

A typical reaction of this type is

5n + 2ggU - 1§'61Ba + %Kr + 35n
The fission fragments, barium and krypton, and the released neutrons have a
great deal of kinetic energy following the fission event. Notice that the sum of the
mass numbers, or number of nucleons, on the left is same as the total number of
nucleons on the right. The total number of protons (92) is also the same on both
sides. The energy Q released through the disintegration 200.422 MeV.

The breakup of the uranium nucleus can be compared to what happens to a drop
of water when excess energy is added to it. All the atoms in the drop have energy,
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but not enough to break up the drop. If enough energy is added to set the drop
vibrating, however, it will undergo elongation and compression until the amplitude
of vibration becomes large enough to cause the drop to break apart. The sequence
of events is as follows :

1. The 23U nucleus captures a thermal (slow-moving) neutron.

2. The capture results in the formation of 236U*, and the excess energy of this
nucleus causes it to undergo violent oscillations.

3. The 23%U* nucleus becomes highly elongated, and the force of repulsion
between protons in the two halves of the dumbbell-shaped nucleus tends to
increase the distortion.

4. The nucleus splits into two fragments, emitting several neutrons in the
process.

Nuclear Fusion :

When two light nuclei combine to form a heavier nucleus, the process is called
nuclear fusion. Because the mass of the final nucleus is less than the sum of the
masses of the original nuclei, there is a loss of mass, accompanied by a release of
energy. Although fusion power plants have not yet been developed, a worldwide
effort is under way to harness the energy from fusion reactions in the laboratory.

Fusion in the Sun :

All stars generate their energy through fusion processes. About 90% of stars,
including the Sun, fuse hydrogen, whereas some older stars fuse helium or other
heavier elements. The energy produced by fusion increases the pressure inside the
star and prevents its collapse due to gravity.

Two conditions must be met before fusion reactions in the star can sustain its
energy needs. First, the temperature must be high enough (about 107 K for hydrogen)
to allow the kinetic energy of the positively charged hydrogen nuclei to overcome
their mutual Coulomb repulsion as they collide. Second, the density of nuclei must
be high enough to ensure a high rate of collision.

It’s interesting to note that a quantum effect is key in making sunshine.
Temperatures inside stars like the Sun are not high enough to allow colliding protons
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to overcome the Coulomb repulsion. In a certain percentage of collisions, however,
the nuclei pass through the barrier anyway an example of quantum tunneling.

The proton—proton cycle is a series of three nuclear reactions that are believed
to be the stages in the liberation of energy in the Sun and other stars rich in
hydrogen. An overall view of the proton—proton cycle is that four protons combine
to form an alpha particle and two positrons, with the release of 25 MeV of energy
in the process.

The specific steps in the proton—proton cycle are
H+ H D +e
H+ H — 7D +e +v

iH+21D—> %He+'y

where D stands for deuterium. The second reaction is followed by either hydrogen-
helium fusion or helium-helium fusion

{H+ gHe - gHe+e++v

JHe + 3He — jHe +2(]H)

The energy liberated is carried primarily by gamma rays, positrons, and
neutrinos, as can be seen from the reactions. The gamma rays are soon absorbed by
the dense gas, raising its temperature. The positrons combine with electrons to
produce gamma rays, which in turn are also absorbed by the gas within a few
centimeters. The neutrinos, however, almost never interact with matter; hence, they
escape from the star, carrying about 2% of the energy generated with them. These
energy-liberating fusion reactions are called thermonuclear fusion reactions. The
hydrogen (fusion) bomb, first exploded in 1952, is an example of an uncontrolled
thermonuclear fusion reaction.

7.4 Nuclear reactor

The neutrons emitted when 233U undergoes fission can in turn trigger other
nuclei to undergo fission, with the possibility of a chain reaction. Calculations show
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that if the chain reaction isn’t controlled, it will proceed too rapidly and possibly
result in the sudden release of an enormous amount of energy (an explosion), even
from only 1 g of 2°U.

A nuclear reactor is a system designed to maintain what is called a self-
sustained chain reaction, first achieved in 1942 by a team led by Enrico Fermi. Most
reactors in operation today also use uranium as fuel. Natural uranium contains only
about 0.7% of the 23°U isotope, with the remaining 99.3% being the 238U isotope.
This fact is important to the operation of a reactor because 233U almost never
undergoes fission. Instead, it tends to absorb neutrons, producing neptunium and
plutonium.

For this reason, reactor fuels must be artificially enriched so that they contain

several percent of the 23°U isotope.

- 235
- e u

=»>Q 2Kr
131 Ba \ \

J -ro 1355b

1381

—0

Y
9581’0

5 )_ 233U

Figure. 7.2

On average, about 2.5 neutrons are emitted in each fission event of 23°U. To
achieve a self-sustained chain reaction, one of these neutrons must be captured by
another ?»U nucleus and cause it to undergo fission. A useful parameter for
describing the level of reactor operation is the reproduction constant K, defined as
the average number of neutrons from each fission event that will cause another event.
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A self-sustained chain reaction is achieved when K =1. Under this condition,
the reactor is said to be critical. When K is less than 1, the reactor is subcritical and
the reaction dies out. When K is greater than 1, the reactor is said to be supercritical
and a runaway reaction occurs. In a nuclear reactor used to furnish power to a utility
company, it is necessary to maintain a K value close to 1.

The basic design of a nuclear reactor is shown in Figure 7.3. The fuel elements
consist of enriched uranium. The size of the reactor is important in reducing neutron
leakage: a large reactor has a smaller surface-to-volume ratio and smaller leakage
than a smaller reactor.

It’s also important to regulate the neutron energies because slow neutrons are far
more likely to cause fissions than fast neutrons in 23°U. Further, 238U doesn’t absorb
slow neutrons. For the chain reaction to continue, the neutrons must, therefore, be
slowed down. This slowing is accomplished by surrounding the fuel with a substance
called a moderator, such as graphite (carbon) or heavy water (D,0).

Most modern reactors use heavy water. Collisions in the moderator slow the
neutrons and enhance the fissioning of 23°U. The power output of a fission reactor
is controlled by the control rods depicted in Figure 7.3. These rods are made of
materials like cadmium that readily absorb neutrons.

Control rods Radiation shield

00 s

N
\x il

Y
Fuel elements Moderator material

Fig 7.3 Cross section of a reactor core
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Fissions in a nuclear reactor heat molten sodium (or water, depending on the
system), which i1s pumped through a heat exchanger. There, the thermal energy is
transferred to water in a secondary system. The water is converted to steam, which
drives a turbine-generator to create electric power.

7.5 Summary

This nuclear energy may solve our energy crisis for thousands of years. Using
safety measure and new technology like breeder reactor may help us to solve the
energy crisis. Our ocean has a source of Uranium which may provide us energy
security in near future.

7.6 Question

1. What is nuclear fission and fusion ?
What is slow neutron and fast neutron ?
What is moderator ?

Which kind of product used as moderator ?

A

What is the source of energy in Sun?



148

NSOU e GE-PH-41

10.
11.

References

. Atomic and Nuclear Physics | N. Subrahmanym and Brij Lal, S. Chand &

Company Ltd.

. Modern Atomic and Nuclear Physics : A. B. Gupta, Books and Allied (P)

Ltd.

. Modern Physics : S. P Khare, Rastogi Publications

Modern Physics : R. Murugeshan, K. Sivaprakash, S. Chand & Company
Lid.

Schaum.s outline of Theory and problems of Modern Physics : R. Gautreau,
W. Savin, Tata McGraw-Hill Publishing Company Ltd.

Modern Physics : R. Murugeshan, K. Sivaprakash, S. Chand & Company
Ltd.

Atomic Physics : S. N. Ghoshal, S. Chand & Company Ltd.

Fundamentals of Quantum Mechanics : Y R. Waghmare, S. Chand &
Company Pvt. Ltd.

Foundation of Quantum Mechanics : A. B. Gupta, Books and Allied (P) Ltd.
Basic Quantum Mechanics : A. Ghatak, Macmillan India Ltd.
Atomic Physics : S. N. Ghoshal, S. Chand & Company Ltd.



	T
	A
	B
	C
	D
	E

